Пилотируемая космонавтика в XXI веке. История пилотируемой космонавтики Космонавтика Информацию О

В последнюю четверть века истории пилотируемой космонавтики всё чаще звучат голоса тех, кто полагает: никакого смысла в этом занятии нет. Всё то, что гордо именуют космонавтикой, - лишь рудимент советско-американской гонки престижа космических масштабов. Не разумнее ли закрыть МКС, чтобы потратить больше средств на освоение Солнечной системы автоматами?

Лозунг "пилотируемый космос не нужен" звучит всё громче, причём со ссылками на мнение разбирающихся в вопросе людей. Например такое : "Гречко стал первым человеком... который... не побоялся изложить крамольную мысль о бесполезности… человека в космосе". Сходные убеждения приписывают и конструктору Владимиру Челомею. Да и специалисты NASA всё чаще говорят, что посылать человека на другие планеты пока нельзя из-за угрозы космической радиации. Без веских оснований такие люди на подобную точку зрения стать не могут: космос для них стал смыслом жизни.

Увы, Кучинотта по какой-то причине не захотел озвучивать СМИ конкретные цифры нормативов NASA, а также дозу, угрожающую космонавтам на пути к другим планетам. Попробуем восполнить этот недостаток. Сегодня для астронавтов на МКС агентство считает нормой 0,5 зиверта в год, что практически равно цифрам Роскосмоса. Проблема в том, что единственные проводившиеся измерения дозы радиации, которую могут получить астронавты на пути к другой планете, никак не выше этого уровня. Как показали замеры на летевшем к Марсу "Кьюриосити", за 180 дней полёта туда по кратчайшему маршруту астронавты получат 0,33 зиверта (столько же при возвращении). На поверхности Марса тот же марсоход зафиксировал всего 0,23 зиверта в год . Таким образом вся экспедиция с годичным пребыванием на поверхности планеты должна получить 0,9 зиверта за два года, то есть 0,45 зиверта за каждый год, что меньше нормы NASA в 0,5 зиверта.

Более того, общее количество радиации, которое стандарты NASA считают допустимыми для мужчин , составляют от 1,5 зиверта (в возрасте до 25 лет), 2,5 - для 35-летних, 3,25 - для 45-летних и 4,0 зиверта для 55 лет. Это означает, что человек может не раз слетать на другую планету и обратно несмотря на космическую радиацию.

Особо отметим: все эти цифры даны для полного отсутствия специальной антирадиационной зашиты. На практике такое вряд ли случится: даже обычный советский танк изнутри покрыт сантиметрами соответствующих материалов. Сомнительно, что американское космическое агентство будет заботиться о своей экспедиции меньше, чем советская армия заботилась о рядовых срочной службы. На деле NASA уже сегодня разрабатывает такую защиту на новой основе - наполненных водородом борных нанотрубках. Кроме того, в российском Национальном исследовательском технологическом университете "МИСиС" уже научились получать композиты на основе алюминия с включениями таких нанотрубок. Из такого композита можно создавать не только оболочку космических кораблей для действительно дальних путешествий, но и скафандры.

После высадки на иных небесных телах появятся и другие возможности снижения радиационной опасности. Так же как и на Земле, на других планетах есть пещеры, каньоны и лавовые трубки, в которых целесообразно разместить людей на ночлег в случае, если им будет угрожать солнечная буря. Проекты подобных экспедиций предусматривают и обкладывание местным грунтом надувных жилых модулей, и иные импровизированные антирадиационные щиты.

Впрочем, и без всякой защиты есть ещё пара способов в несколько раз сократить дозу облучения, получаемого при полёте в дальнем космосе. Так, астрономы из Германии и США в 2015 году предложили отправлять миссии к другим планетам в период высокой солнечной активности . Логика за этим предложением проста: вспышки на Солнце разгоняют протоны от светила в окружающий космос, усиливая солнечный ветер. Из-за этого галактические лучи слабее проникают внутрь гелиосферы - пузыря, образованного солнечным ветром. Соответственно, общий уровень радиационной угрозы внутри неё существенно снижается. По расчётам, общая накопленная космонавтами доза при этом может упасть в четыре раза.

Вторым способом борьбы с угрозой является резкое сокращение времени путешествия. Если пользоваться обычными ракетами, сделать это не получится, однако, используя ядерные буксиры, вполне можно достигнуть ближайших планет за полтора-два месяца. Ну а за относительно безопасный период солнечного максимума можно будет добраться и до куда более удалённых небесных тел.

Итак, при всей серьёзности космической радиации она не налагает никаких существенных ограничений для освоения других небесных тел. Конечно, если мы захотим отправить людей к девятой планете, находящейся в сотни и тысячи раз дальше от Солнца, чем планеты земной группы, проблемы обязательно появятся. Там нет гелиосферы, да и путешествие займёт немало времени. Однако на текущем этапе планов по полётам в настолько дальний космос никто и не строит.

Чем же вызваны периодические заявления тех же работников NASA в СМИ о "неприемлемости" посылки астронавтов на другие планеты (и возникший отсюда миф о "смертельной и непреодолимой" космической радиации)? Следует чётко понимать: грантовое и проектное финансирование науки, типичное для Запада, а теперь и для нас, имеет определённые особенности. Одна из наиболее заметных среди них: "пирожки покупают у тех, кто громче всего рассказывает об их пользе". Космическим агентствам, которые действительно хотят летать в дальний космос, нужно как-то донести до понимания общества, что без денег такой полёт не случится. NASA же получает ничтожное по меркам своей страны финансирование. Весь бюджет агентства на 2016 год равен стоимости шести бомбардировщиков B-2 (впрочем, доходы Роскосмоса и на один такой не потянули бы). Конкурировать с основными бюджетополучателями в виде военных очень тяжело, и, чтобы добиться хоть чего-то, хороши буквально любые средства. Разумеется, в таких условиях лучше не называть конкретных нормативов NASA по допустимой радиации - иначе выбить средства на создание защиты от неё может и не получиться. Как мы видим, агентство не в чем винить, на его месте так поступили бы многие.

Выяснив, в чём планетоходы уступают космонавтам и почему тем вполне под силу полёт на другие планеты, стоит упомянуть и о принципиальных недостатках пилотируемой космонавтики. Главным из них является то, что она рассматривается политиками как типичная гонка престижа - нечто вроде средства национального самоутверждения. В итоге её часто используют именно в этом качестве, в ущерб интересам как самой космонавтики, так и наук, связанных с изучением внеземного пространства.

Один из наиболее известных примеров - спешка СССР и США во время инициированной политиками лунной гонки. В результате американцы, например, так торопились обогнать конкурентов, что не успели отработать нормальные скафандры для лунных прогулок. От этого у астронавтов на Луне не было физической возможности согнуть ногу в колене, отчего они не ходили, а прыгали , лишь слегка сгибая ноги на манер игрушечных зайчиков, работающих от батареек:

Ничего комичного в этом не было: ходить подобным образом на значительное расстояние не слишком удобно, отчего в США были специально созданы лунные автомобили и даже лунные мопеды. Однако к первой высадке на Луне из-за спешки (всё та же гонка престижа) ничего этого подготовить не успели, из-за чего первым людям на Луне пришлось работать на удалении не больше 60 метров от посадочного модуля. По современным американским оценкам, с нормальным скафандром скорость пешего передвижения астронавтов была бы не ниже средней скорости, на которой удалось эксплуатировать луномобили.

Как бы то ни было, справиться с настроем "первые любой ценой" в последующих посадках на Луне всё же удалось. Хуже было то, что весь американский проект с "Сатурнами" строился по принципу "любой ценой, но как можно быстрее". Из-за этого он был так дорог, что, кроме как в рамках гонки престижа, эксплуатировать его было слишком накладно, что и привело к сворачиванию полётов. Однако с окончанием лунного проекта привычка политиков рассматривать космонавтов как средство информационной войны никуда не делась. Их главной задачей де-факто часто становилась демонстрация того, что "а вот здесь мы первые" - со всеми вытекающими отсюда негативными последствиями.

После поражения в лунной гонке руководство СССР встало на путь сокращения космических расходов. Набор лозунгов в стиле "И на Марсе будут яблони цвести" сменился на известную брежневскую фразу: "Исследования с помощью долговременных орбитальных станций - магистральный путь в освоении космоса". Называя вещи своими именами, концепция эта была продиктована стремлением сохранить лидерство на фоне США, в ту пору не имевших крупных успехов с подобными станциями. Раз здесь у нас есть преимущество - его надо использовать, рассудило руководство. Тем более что прибытие на Луну после американцев явно не дало бы советской космонавтике возможность чувствовать себя первой в мире.

Чтобы лучше всего оценить эффективность этой стратегии, обратимся к одному из самых известных обитателей таких станций - космонавту Гречко. Как он констатирует, "постоянно пилотируемая орбитальная станция не оптимальное решение. Там эффективность как у паровоза... У орбитальных станций очень маленький КПД, несколько процентов". Как раз их, по его мнению, и есть смысл заменять автоматическими обсерваториями типа "Хаббла". Ну а человек, по мнению космонавта, нужен лишь для выполнения задач, с которыми автоматы не справляются, - вроде ремонта тех же станций и межпланетных перелётов.

Обратимся к цифрам: создание и десятилетие эксплуатации МКС оценивались в 157 миллиардов долларов, однако первым десятилетием срок её работы (до 2024 года) не закончился, а значит, эта цифра ещё значительно возрастёт. Учитывая, что шесть полётов на Луну обошлись в своё время США менее чем в 170 миллиардов долларов (сегодняшних), становится несложно понять, что именно Гречко имел в виду под эффективностью "как у паровоза". По сути, самой значимой целью МКС сегодня являются не эксперименты, которые могли бы поставить и автоматы, а простое сохранение умения запускать людей в космос, которое после лунной программы больше особо не к чему приложить. Как показывает опыт США, отказавшись раз от той или иной технологической практики (полёты на ракетах, свёрнутые в пользу шаттлов), вернуться к ней довольно тяжело: американские астронавты не летают в космос на своих кораблях уже пять лет и вряд ли смогут сделать это в ближайшие годы.

Гречко, ещё много лет назад отметил , что у российской космонавтики шансов сохранить лидерство не так много, потому что "стратегия наша неправильная... мы планируем в основном с МКС, а денег на МКС и на межпланетные полёты не дают". И в самом деле: трудно одновременно финансировать и станцию стоимостью с лунную программу, и полёты куда-то дальше неё.

Подведём итоги: пилотируемой космонавтике трудно найти приемлемую альтернативу в настоящем детальном исследовании планет и спутников Солнечной системы. Длящийся десятилетия отказ от неё в пользу исследований автоматами и программа орбитальных станций - очередная замена масла маргарином. С той, правда, разницей, что орбитальный "маргарин" пока обходится не дешевле лунного "масла". Однако в ближайшие годы ожидать какого-либо изменения в этой ситуации не приходится. Как отмечают в том же NASA, электоральный цикл в США слишком короток, чтобы политику имело смысл бороться за рейтинги, продвигая полёт к другой планете. Ну а Россия в настоящий момент просто не в том состоянии, чтобы в одиночку предпринять что-то подобное. Каких-то сдвигов в исследовании дальнего космоса стоит ожидать, только если внешний, нетрадиционный игрок расшатает сложившийся баланс сил и заставит ведущие страны мира вновь включиться в космическую гонку.

Изучив этот параграф, мы:

  • вспомним ученых, внесших значительный вклад в освоение космоса;
  • узнаем, как можно изменять орбиту космических кораблей;
  • убедимся, что космонавтика широко используется на Земле.

Зарождение космонавтики

Космонавтика изучает движение искусственных спутников Земли (ИСЗ), космических кораблей и межпланетных станций в космическом пространстве. Существует различие между природными телами и искусственными космическими аппаратами: последние при помощи реактивных двигателей могут изменять параметры своей орбиты.

Значительный вклад в создание научных основ космонавтики, пилотируемых космических кораблей и автоматических межпланетных станций (АМС) внесли советские ученые.

Рис. 5.1. К. Э. Циолковский (1857-1935)

К. Э. Циолковский (рис. 5.1) создал теорию реактивного движения. В 1902 г. он впервые доказал, что только при помощи реактивного двигателя можно достичь первой космической скорости.

Рис. 5.2. Ю. В. Кондратюк (1898-1942)

Ю. В. Кондратюк (А. Г. Шаргей; рис. 5.2) в 1918 г. рассчитал траекторию полета на Луну, которая впоследствии была применена в США при подготовке космических экспедиций «Аполлон». Выдающийся конструктор первых в мире космических кораблей и межпланетных станций С. П. Королев (1906-1966) родился и учился в Украине. Под его руководством 4 октября 1957 г. в Советском Союзе был запущен первый в мире ИСЗ, созданы АМС, которые первыми в истории космонавтики достигли Луны, Венеры и Марса. Наибольшим достижением космонавтики в то время был первый пилотируемый полет космического корабля «Восток», на котором 12 апреля 1961 г. летчик-космонавт Ю. А. Гагарин совершил кругосветное космическое путешествие.

Круговая скорость

Рассмотрим орбиту спутника, который обращается по круговой орбите на высоте Н над поверхностью Земли (рис. 5.3).

Рис. 5.3. Круговая скорость определяет движение тела вокруг Земли на постоянной высоте Н над ее поверхностью

Для того чтобы орбита была постоянной и не изменяла свои параметры, должны выполняться два условия.

  1. Вектор скорости должен быть направлен по касательной к орбите.
  2. Величина линейной скорости спутника должна равняться круговой скорости, которая определяется уравнением:

(5.1)

где - Мзем = 6×10 24 кг - масса Земли; G = 6,67×10 -11 (H м 2)/кг 2 - постоянная всемирного тяготения; Н - высота спутника над поверхностью Земли, Rзем = 6,37 10 9 м - радиус Земли. Из формулы (5.1) следует, что самое большое значение круговая скорость имеет при высоте Н = 0, то есть в том случае, когда спутник движется у самой поверхности Земли. Такая скорость в космонавтике называется первой космической:

В реальных условиях ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью, ибо плотная атмосфера очень тормозит движение тел, которые перемещаются с большой скоростью. Если бы даже скорость ракеты в атмосфере достигла величины первой космической, то большое сопротивление воздуха разогрело бы ее поверхность до температуры плавления. Поэтому ракеты во время старта с поверхности Земли сначала поднимаются вертикально вверх до высоты нескольких сотен километров, где сопротивление воздуха незначительно, и только тогда спутнику сообщается соответствующая скорость в горизонтальном направлении.

Для любознательных

Невесомость во время полета в космическом корабле наступает в момент, когда прекращают работу ракетные двигатели. Для того чтобы ощутить состояние невесомости, не обязательно лететь в космос. Любой прыжок в высоту, или длину, когда исчезает опора под ногами, дает нам кратковременное ощущение состояния невесомости.

Движение космических аппаратов по эллиптическим орбитам

Если величина скорости спутника будет отличаться от круговой или вектор скорости не будет параллелен плоскости горизонта, тогда космический аппарат (КА) будет обращаться вокруг Земли по эллиптической траектории. Согласно первому закону, в одном из фокусов эллипса должен находиться центр Земли, поэтому плоскость орбиты спутника должна пересекать плоскость экватора или совпадать с ней (рис. 5.4). В этом случае высота спутника над поверхностью Земли изменяется в пределах от перигея до апогея. ствующим точкам на орбитах планет - перигелия и афелия (см. § 4).

Рис. 5.4. Движение спутника по эллиптической траектории похоже на обращение планет в зоне тяготения Солнца. Изменение скорости определяется законом сохранения энергии: сумма кинетической и потенциальной энергии тела при движении по орбите остается постоянной

Если спутник движется по эллиптической траектории, то, согласно второму закону Кеплера, изменяется его скорость: наибольшую скорость спутник имеет в перигее, а наименьшую - в апогее.

Период обращения космического аппарата

Если космический аппарат движется по эллипсу вокруг Земли с переменной скоростью, его период обращения можно определить с помощью третьего закона Кеплера (см. § 4):

где Тс - период обращения спутника вокруг Земли; Т м = 27,3 суток - сидерический период обращения Луны вокруг Земли; а с - большая полуось орбиты спутника; =380000 км большая полуось орбиты Луны. Из уравнения (5.3) определим:

(5.4)

Рис. 5.5. Геостационарный спутник обращается на высоте 35600 км только по круговой орбите в плоскости экватора с периодом 24 ч (N - Северный полюс)

В космонавтике особую роль играют ИСЗ, которые «висят» над одной точкой Земли - это геостационарные спутники, использующиеся для космической связи (рис. 5.5).

Для любознательных

Для обеспечения глобальной связи достаточно вывести на геостационарную орбиту три спутника, которые должны «висеть» в вершинах правильного треугольника. Сейчас на таких орбитах находятся уже несколько десятков коммерческих спутников разных стран, обеспечивая ретрансляцию телевизионных программ, мобильную телефонную связь, компьютерную сеть Интернет.

Вторая и третья космические скорости

Эти скорости определяют условия соответственно для межпланетных и межзвездных перелетов. Если сравнить вторую космическую скорость V 2 с первой V 1 (5.2), то получим соотношение:

Космический корабль, стартующий с поверхности Земли со второй космической скоростью и движущийся по параболической траектории, мог бы полететь к звездам, потому что парабола является незамкнутой кривой и уходит в бесконечность. Но в реальных условиях такой корабль не покинет Солнечную систему, ибо любое тело, которое вышло за пределы земного тяготения, попадает в гравитационное поле Солнца. То есть космический корабль станет спутником Солнца и будет обращаться в Солнечной системе подобно планетам или астероидам.

Для полета за пределы Солнечной системы космическому кораблю нужно сообщить третью космическую скорость V 3 =16,7 км/с. К сожалению, мощность современных реактивных двигателей еще недостаточна для полета к звездам при старте непосредственно с поверхности Земли. Но если КА пролетает через гравитационное поле другой планеты, он может получить дополнительную энергию, которая позволяет в наше время совершать межзвездные полеты. В США уже запустили несколько таких АМС («Пионер-10,11» и «Вояджер-1,2»), которые в гравитационном поле планет-гигантов увеличили свою скорость настолько, что в будущем вылетят за пределы Солнечной системы.

Для любознательных

Полет на Луну происходит в гравитационном поле Земли, поэтому КА летит по эллипсу, в фокусе которого находится центр Земли. Самая выгодная траектория полета с минимальным расходом топлива - это эллипс, являющийся касательным к орбите Луны.

Во время межпланетных полетов, например на Марс, КА летит по эллипсу, в фокусе которого находится Солнце. Самая выгодная траектория с наименьшей затратой энергии проходит по эллипсу, который является касательным к орбите Земли и Марса. Точки старта и прилета лежат на одной прямой по разные стороны от Солнца. Такой полет в одну сторону длится более 8 месяцев. Космонавтам, которые в недалеком будущем посетят Марс, надо учесть, что сразу же вернуться на Землю они не смогут: Земля по орбите движется быстрее, чем Марс, и через 8 месяцев его опередит. До возвращения космонавтам нужно находиться на Марсе еще 8 месяцев, пока Земля займет выгодное положение. То есть общая продолжительность экспедиции на Марс будет не менее двух лет.

Практическое применение космонавтики

В наше время космонавтика служит не только для изучения Вселенной, но и приносит большую практическую пользу людям на Земле. Искусственные космические аппараты изучают погоду, исследуют космос, помогают решать экологические проблемы, ведут поиски полезных ископаемых, обеспечивают радионавигацию (рис. 5.6, 5.7). Но наибольшие заслуги космонавтики в развитии космических средств связи, космического мобильного телефона, телевидения и Интернета.

Рис. 5.6. Международная космическая станция

Ученые проектируют строительство космических солнечных электростанций, которые будут передавать энергию на Землю. В недалеком будущем кто-нибудь из нынешних учеников полетит на Марс, будет осваивать Луну и астероиды. Нас ждут загадочные чужие миры и встреча с другими формами жизни, а возможно, и с внеземными цивилизациями.

Рис. 5.7. Космическая станция в виде гигантского кольца, идею которой предложил Циолковский. Вращение станции вокруг оси создаст искусственное притяжение

Рис. 5.8. Старт украинской ракеты «Зенит» с космодрома в Тихом океане

Выводы

Космонавтика как наука о полетах в межпланетное пространство бурно развивается и занимает особое место в методах изучения небесных тел и космической среды. Кроме того в наше время космонавтика успешно применяется в средствах связи (телефон, радио, телевидение, Интернет), в навигации, геологии, метеорологии и многих других областях деятельности человека.

Тесты

  1. С первой космической скоростью может лететь космический корабль, обращающийся вокруг Земли по круговой орбите на такой высоте над поверхностью:
      А. О км.
      Б. 100 км.
      В. 200 км.
      Г. 1000 км.
      Д. 10000 км.
  2. Ракета стартует с поверхности Земли со второй космической скоростью. Куда она долетит?
      А. До Луны.
      Б. До Солнца.
      В. Станет спутником Солнца.
      Г. Станет спутником Марса.
      Д. Полетит к звездам.
  3. Космический корабль обращается вокруг Земли по эллиптической орбите. Как называется точка орбиты, в которой космонавты находятся ближе всего к Земле?
      А. Перигей.
      Б. Перигелий.
      В. Апогей.
      Г. Афелий.
      Д. Парсек.
  4. Ракета с космическим кораблем стартует с космодрома. Когда космонавты почувствуют невесомость?
      А. На высоте 100 м.
      Б. На высоте 100 км.
      В. Когда выключится реактивный двигатель.
      Г. Когда ракета попадет в безвоздушное пространство.
  5. Какие из этих физических законов не выполняются в невесомости?
      А. Закон Гука.
      Б. Закон Кулона.
      В. Закон всемирного тяготения.
      Г. Закон Бойля-Мариотта.
      Д. Закон Архимеда.
  6. Почему ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью?
  7. Чем отличается перигей от перигелия?
  8. Почему при запуске космического корабля возникают перегрузки?
  9. Выполняется ли в невесомости закон Архимеда?
  10. Космический корабль обращается вокруг Земли по круговой орбите на высоте 200 км. Определите линейную скорость корабля.
  11. Может ли космический корабль сделать за сутки 24 оборота вокруг Земли?

Диспуты на предложенные темы

  1. Что вы можете предложить для будущих космических программ?

Задания для наблюдений

  1. Вечером найдите на небе спутник или международную космическую станцию, которые освещаются Солнцем и с поверхности Земли выглядят, как яркие точки. Нарисуйте их путь среди созвездий в течение 10 минут. Чем отличается полет спутника от движения планет?

Ключевые понятия и термины:

Апогей, геостационарный спутник, вторая космическая скорость, круговая скорость, межпланетная космическая станция, перигей, первая космическая скорость, искусственный спутник Земли.

Заправлены в планшеты
Космические карты,
И штурман уточняет
В последний раз маршрут...

Владимир Войнович (1957)

В начале 2016 года о том, нужна ли человечеству пилотируемая космонавтика, дискутируют научный журналист, модератор Клуба научных журналистов Александр Сергеев и астроном, ст. науч. сотр. ГАИШ МГУ Владимир Сурдин.

Александр Сергеев :

Нередко звучит мнение , что пилотируемая космонавтика не нужна , что это «всегда была политическая фаллометрия между сверхдержавами» и все задачи космических исследований могут выполнить роботы. Хотя в определенных аспектах это суждение не лишено оснований, в общем случае оно является ошибочным.

Естественно, политическая конкуренция была основным двигателем пилотируемой космонавтики. Как результат эти технологии были созданы исторически несколько преждевременно, из-за чего оказались связаны с чрезмерными рисками и затратами. Думаю, реально востребованными они станут еще через полвека. Но раз уж технологии созданы, желательно их сохранять и совершенствовать, а не забрасывать, чтобы потом воссоздавать с нуля. В этом смысл неспешной деятельности вокруг МКС.

Единственной ключевой проблемой в освоении человеком космоса остается высокая стоимость вывода грузов на орбиту. Из-за этого слишком дорого создавать вне Земли полноценную технологическую инфраструктуру. А без нее очень высокими оказываются риски, что, в свою очередь, увеличивает затраты. Получается порочный круг. Если тем или иным способом удастся существенно удешевить доставку, развитие космонавтики резко ускорится.

Принципиально это возможно. По формуле Циолковского для разгона 1 кг до первой космической скорости с помощью химических двигателей нужно всего около 20 кг топлива, то есть порядка 10 долл. Реальная стоимость доставки груза на МКС - около 30 тыс. долл. за килограмм.

Накрутка на 3,5 порядка (!) связана с традиционными технологическими решениями и организационными процессами, а также с вынужденно завышенными требованиями к безопасности (из-за невозможности оказания технической помощи в полете). Почти наверняка эту стоимость можно снизить в десятки раз за счет масштабирования космической деятельности, создания технологической инфраструктуры на орбите и реализации оригинальных идей, вроде запусков с высотных платформ или электромагнитных катапульт.

Что же касается необходимости пилотируемой космонавтики, то задачи, которые в обозримом будущем неосуществимы для автоматов, в космосе есть. Несколько лет назад я читал на эту тему американский отчет. Главной из таких задач там называлось геологическое бурение на поверхности других небесных тел. Речь шла не о скромных экспериментах, как на «Луне-24» или на «Кьюриосити», а о полноценном разведывательном бурении на десятки и сотни метров.

Также предлагаю сравнить скорость передвижения по поверхности:

  • Лунный ровер «Аполлона-17» - 36 км за 3 дня - 12 км / сутки.
  • «Луноход-2» - 42 км за 4 месяца - 350 м / сутки.
  • «Оппортьюнити» - 42 км за 11,5 лет - 10 м / сутки.

Как сделать космическую базу рентабельной?

Есть мнение, что даже при снижении стоимости выведения на орбиту на порядок и росте орбитального трафика на два порядка пилотируемая космонавтика не найдет коммерческого оправдания. Я полагаю, что это не совсем так. Уже сейчас есть направления, которые находятся на грани рентабельности, а если стоимость выведения снизится на порядок-полтора, то работающие бизнес-идеи просто непременно появятся.

Сейчас на МКС живет шесть человек. Если принять рост орбитального трафика в сто раз, то космическое население должно вырасти даже больше, поскольку будет значительная экономия ресурсов за счет масштабирования и синергии. Итак, на орбите работает около тысячи человек. Чем они могут там заниматься?

Более или менее понятно, что не астрономическими наблюдениями, поскольку для этого даже на земных обсерваториях присутствие человека обычно не требуется.

Уникальное торговое предложение космической базы включает длительную невесомость, высокий вакуум, впечатляющий вид Земли из космоса, возможность сборки и обслуживания космических аппаратов без сведения их с орбиты. Возможно, я что-то упустил, но эти пункты очевидны.

Прежде всего, там создается отель. Даже сейчас, когда туристический билет на МКС стоит более 20 млн долл., туда стоит очередь желающих. И на жалкий суборбитальный прыжок за 200 тыс. - тоже. Думаю, что многие захотят за пару миллионов провести отпуск в орбитальном отеле на огромной космической станции с населением в сотни человек, перепробовать там кучу аттракционов (от спортивных игр в невесомости до выхода в открытый космос), познакомиться с работой различных коммерческих, технологических и научных команд.

Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами.

Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы.

Ремонтный док в космосе

Следующее естественное направление - ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально.

Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять.

Развитием идеи ремонтного дока будет строительная верфь для крупных спутников и космических кораблей. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта.

При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором.

Исследовательская база в космосе

Следующий шаг - создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических.

Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.

Космический город

И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями. Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок.

Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны - в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.

Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок - туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно.

Необходимо менять стратегию

Владимир Сурдин :

Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все - инженеры, врачи, идеологи. Появление человека на околоземной орбите и далее на Луне сильно изменило мировоззрение просвещенной части землян, стимулировало прогресс науки.

Но в последние десятилетия в пилотируемой космонавтике застой. Ее развитие практически остановилось в середине 1980-х. Стало ясно, что на околоземной орбите человеку опасно оставаться более года, а вдали от Земли - более полугода. Что все оборонные и хозяйственные задачи (мониторинг Земли, связь, навигация и проч.) эффективнее решаются беспилотными аппаратами. Человек в космосе остается элементом государственного престижа, но с годами эффективность и этой его роли снижается.

Сейчас космонавты присутствуют только на МКС и в основном занимаются поддержанием работоспособности станции. Надежды на разработку новых технологий в невесомости (идеальные кристаллы, чистые лекарства), очевидно, не оправдываются. Научные эксперименты на МКС проводятся. Но если не принимать во внимание меркантильные соображения (т. е. финансирование), то ученые не горят желанием размещать свои приборы на МКС, предпочитая непилотируемые аппараты. Отправляя научную установку на МКС, ее всё равно приходится делать максимально автоматизированной и снабжать дополнительными устройствами, нейтрализующими вредное влияние (вибрацию и т. п.) космонавтов и систем их жизнеобеспечения.

Насколько я знаю, пилотируемая космонавтика съедает более трети бюджета гражданских космических агентств, не принося сколько-нибудь значительных научных и технических результатов, в отличие от беспилотных орбитальных аппаратов и межпланетных зондов.

Тем не менее по закону Паркинсона штат любого ведомства со временем только возрастает. Чиновники от пилотируемой космонавтики декларируют для нее новые амбициозные цели (полеты к астероидам, к Марсу), не делая в этом направлении реальных шагов. Даже моделируя на Земле длительные полеты (например, «Марс–500»), они не создают условий, по возможности близких к космическим, - я имею в виду радиацию.

Разумеется, было бы недальновидно на основании сказанного запретить пилотируемые полеты и в результате потерять наработанные технологии. Но менять стратегию необходимо. Технологии пребывания человека в космосе уже используются частными фирмами, развивающими космический туризм, поэтому они не пропадут. А государственные деньги желательно тратить на решение фундаментальных задач.

Предыдущее поколение людей вошло в историю цивилизации первыми шагами в космос. А чем ответит нынешнее поколение? Если переориентировать приоритеты большой космонавтики на создание новых межпланетных зондов и космических телескопов, то наше поколение могло бы стать первым обнаружившим жизнь вне Земли. По-моему, это достойная задача, решив которую мы откроем новые перспективы для человечества.

Александр Сергеев :

Я полностью согласен, что при неизменности технологий выведения на орбиту обозначенная Владимиром Георгиевичем смена стратегии оправданна и даже необходима. Однако мне была интересна ситуация, когда стоимость выведения удастся радикально снизить. В этом случае можно обеспечить в космосе защиту от радиации (это лишь вопрос массы экранов), избавить экипажи от постоянного воздействия невесомости (за счет закрутки больших станций) и значительно снизить психологические издержки (за счет увеличения численности экипажей и уровня безопасности полетов). Таким образом, радикальной космической экспансии препятствует лишь высокая стоимость вывода на орбиту. Технически осуществимые альтернативы ракетным технологиям уже придуманы. Тому, кто реализует их на практике, будет принадлежать космос. А до тех пор, да, только роботы и космонавты престижа.

ВЕСТНИК АКАДЕМИИ ВОЕННЫХ НАУК

Полковник Е.И.Жук,

Лауреат Государственной премии РФ,

доктор политических наук, кандидат технических наук,

старший научный сотрудник, действительный член АВН

Военно-политические аспекты пилотируемой космонавтики

Космическая деятельность с самого начала стала ареной военно-политического соперничества двух сверхдержав, продолжающегося в тех или иных формах и с переменным успехом до настоящего времени. Это соперничество особо обострилось с началом пилотируемых полетов и освоения дальнего космоса.

Ключевые слова: космическая деятельность, космонавтика, ракета военного назначения, освоение космического пространства, искусственный спутник, пилотируемый полет, лунная кабина, долговременные космические станции, мирный космос, военный космос.

С запуском первого искусственного спутника Земли (ИСЗ), 4 октября 1957 года, началось практическое освоение бескрайних просторов Вселенной. Именно в России были заложены теоретические и философские основы космической деятельности, выполнены важные инженерно-технические разработки, открывшие путь к использованию беспилотных и пилотируемых космических аппаратов. Первый ИСЗ и полет Юрия Гагарина 12 апреля 1961 года сделали нашу страну великой космической державой. Сбылись слова великого российского ученого, основоположника космонавтики К.Э. Циолковского о том, что человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство.

Проникновение в космос стало одним из величайших свершений человеческого разума в многовековой истории земной цивилизации . Открытие космической эры, первые и наиболее значительные достижения в околоземном пространстве, в исследовании Луны и ближайших планет Солнечной системы были осуществлены наиболее передовыми в экономическом и научно-техническом отношении государствами - СССР и США. Однако космическая деятельность с самого начала стала ареной соперничества двух сверхдержав, стремившихся обеспечить себе военное превосходство на земле и в космосе, добиться победы в военно-политическом и идеологическом противоборстве. Выйдя союзниками из Второй мировой войны, они сразу втянулись в изнурительную гонку ракетно-ядерных вооружений. Сброс атомных бомб на японские города Хиросиму и Нагасаки явился не столько последним актом войны с фашизмом, сколько первой большой операцией «холодной войны»1.

Поворот Вашингтона от политики сотрудничества к конфронтации с Советским Союзом был предрешен приходом в Белый дом (после смерти президента Ф. Рузвельта 12 апреля 1945 года) Г. Трумэна. Первым известным документом «холодной войны» многие историки считают «длинную телеграмму», которую 22 февраля 1946 года направил в Вашингтон поверенный в делах США в Москве Дж. Кеннан. Советский Союз представлялся в ней «неумолимой враждебной силой». Но началом «холодной войны» принято считать известное выступление У. Черчилля 5 марта 1946 года в американском городе Фултоне, где бывший английский премьер призывал объединяться и вооружаться против «советской угрозы». Идею конфронтации с СССР горячо приветствовал президент Г. Трумэн, который спустя год изложил в конгрессе основы политики мира по-американски, вошедшей в историю под названием «доктрины Трумэна». Глава Белого дома провозгласил сферой национальных интересов США практически весь земной шар, а целью политики Соединенных Штатов - поддержку свободных народов, сопротивляющихся попыткам подчинения вооруженным меньшинствам или внешнему давлению, и сопротивление «советскому экспансионизму» повсюду в мире. Важнейшей и приоритетной задачей объявлялась борьба с «советским коммунизмом»2.

С началом «холодной войны» начался и первый этап космической гонки . Политические лидеры двух государств, руководители первых космических проектов в СССР и США по-разному оценивали значение освоения космического пространства для своих стран и всего человечества, представляли масштабы, организационные формы и системы приоритетов национальных космических программ. Но при этом бесспорным остается тот факт, что бескомпромиссное соперничество за право стать первой в истории «космической державой» имело ярко выраженную военно-политическую и идеологическую подоплеку. Разворачивалась и набирала темпы жесточайшая борьба за новое лидерство в науке, технике и экономике, которое давало возможность перевести военный потенциал государства на качественно новый уровень, связанный с обладанием оружием массового поражения и средствами его доставки к целям, находящимся в любом регионе планеты, а также распространить свой контроль на космическое пространство.

Космическая тематика естественным образом исторически была тесно связана с интенсивными работами по созданию ракет военного назначения. В 1935 году будущий главный конструктор космических кораблей, а на тот момент инженер-летчик Сергей Павлович Королев писал: «Интенсивное развитие ракетного дела за последнее десятилетие, несомненно, проходит под знаком подготовки к войне»3. Однако он искренне верил, что создание ракетных двигателей откроет перспективу полета человека в космос. В 1945 году он отмечал: «Мысль об использовании ракетных аппаратов для подъема человека на большие высоты и даже для вылета его в космическое пространство известна довольно давно, так как идея самого ракетного двигателя в силу его природы и принципа действия лучше всего применима для такого рода полетов»4. Программе пилотируемых космических полетов академик Королев придавал особое значение, неизменно подчеркивая ее сложность, большую ответственность, которую несут разработчики пилотируемых космических аппаратов. Он всегда говорил, что при всех положительных сторонах использования автоматических аппаратов окончательное освоение космического пространства и планет возможно только с участием человека при обеспечении нормальных условий для созидательной работы в космосе . О планах нашей страны запустить свой первый ИСЗ мировая общественность узнала в 1956 году, когда в Барселоне на ассамблее специального комитета по проведению Международного геофизического года5 вице-президент Академии наук И.П. Бардин сообщил, что СССР намерен запустить искусственный спутник Земли, посредством которого будут проведены измерения атмосферного давления и температуры, осуществляться наблюдения космических лучей, микрометеоритов, геомагнитного поля и солнечной радиации.

Видный специалист по космонавтике К. Эрике в конце 50-х годов писал: «Совершенно очевидно, что, помимо явных политических и военных интересов, в СССР было проявлено много подлинного энтузиазма в деле проникновения в мировое пространство с помощью космических ракет, в соответствии с пророческим предвидением К.Э. Циолковского... В широком смысле история управляемых снарядов представляет собой мост между ранними идеями космического полета и его практическим воплощением, становящимся реальностью во второй половине XX столетия. Соотношение между космическим полетом и управляемым снарядом может быть несколько упрощенно выражено следующей формулой: «если бы управляемый снаряд не был создан как оружие, его было бы необходимо создать как основу космического полета». Однако в последнем случае вопрос о том, кто должен платить по счетам на многие миллиарды долларов, вероятно, остался бы открытым»6.

В 1952 году для президента Г. Трумэна был подготовлен доклад о проблеме искусственного спутника Земли, ставший впоследствии основой при разработке проекта «Авангард». В докладе содержались самые общие сведения о космическом полете и одновременно указывалось на те преимущества, которые дают государству разработка и эксплуатация ИСЗ (научные, военные и психологические). Обращалось также внимание на необходимость лидерства США в этих областях.

Для координации работ в новой области деятельности в США еще в период Первой мировой войны был создан Национальный консультативный совет по аэронавтике (НАКА), который в соответствии с законом об авиации и исследовании космического пространства 1958 года был преобразован в Национальное управление по аэронавтике и исследованию космического пространства (НАСА). В СССР закона, регламентирующего космическую деятельность, не было. Поэтому цели исследования и практического использования космического пространства вытекали в основном из соответствующих документов ЦК КПСС и Советского правительства. Закон «О космической деятельности» появился уже после распада Советского Союза - 20 августа 1993 года.

Запуск в СССР первого в истории человечества ИСЗ, а затем полет Юрия Гагарина были восприняты американским общественным мнением как акты национального унижения. Сразу же в 1957 году в США были созданы три комиссии, которые независимо друг от друга должны были оценить причины отставания и представить рекомендации относительно ответных мер. Председатель подкомитета по боевой готовности сенатор Л. Джонсон (впоследствии - президент) так охарактеризовал ситуацию: «Мы ожидали, что будем первыми в запуске спутника. Но на самом деле мы даже еще не стали вторыми... Победил Советский Союз»7. Позже по поводу мотивов в соревновании с СССР в области космических исследований он отмечал: «Римская империя контролировала мир потому, что сумела построить дороги. Затем, когда началось освоение морских пространств, Британская империя доминировала в мире, так как имела корабли. В век авиации мы были могущественны, поскольку имели в своем распоряжении самолеты. Сейчас коммунисты захватили плацдарм в космосе»8. Его формула «кто владеет космосом - тот владеет всем миром» была воспринята политическим и военным руководством, а также всей американской общественностью как руководство к практическим действиям. Этот девиз стал основным для американских военных стратегов не только в начале 60-х годов, но и сохранил свою актуальность на современном этапе исторического развития.

После поражения на первом этапе освоения космического пространства США сконцентрировали свои главные усилия на поисках путей и средств формирования и эффективной реализации космической программы, способ-Ной в кратчайшие сроки ликвидировать отставание от Советского Союза и обеспечить им неоспоримое лидерство в исследовании и использовании космического пространства. Военное ведомство и связанные с ним исследовательские центры принялись за разработку перспективных проектов превращения космического пространства в новый театр военных действий. Особое внимание при этом отводилось лунной программе. В послании президента Дж. Кеннеди от 25 мая 1961 года говорилось, что США посвящают себя достижению следующей цели: до конца этого десятилетия высадить человека на Луну и благополучно вернуть его на Землю. Его решение было воспринято многими военными стратегами как стимул к разработке проектов по созданию военной базы на Луне. Свой замысел они предлагали осуществить в пять этапов: доставка на Землю образцов лунного грунта (ноябрь 1964); первая высадка на Луне и возвращение экипажа на Землю (август 1967); временная база на лунной поверхности (ноябрь 1967); завершение строительства лунной базы на 21 человека (декабрь 1968) и ввод ее в эксплуатацию (июнь 1969). В силу исторических обстоятельств военные проекты освоения Луны не были реализованы.

Решение президента Кеннеди было воплощено лишь в проекте «Аполлон» по осуществлению пилотируемых космических полетов на Луну. Испытательные полеты кораблей «Аполлон» начались в беспилотном варианте 28 мая 1964 года. Первый пилотируемый полет был осуществлен на корабле «Аполлон-7», выведенном на орбиту ИСЗ 11 октября 1968 года. 16 июля 1969 года к Луне стартовал «Аполлон-11». 20 июля лунная кабина совершила посадку на Луну, и 21 июля Н. Армстронг впервые в истории человечества вступил на лунную поверхность.

Воодушевленное исторической победой в «лунной гонке», руководство НАСА в сентябре 1969 года направило доклад специальному комитету по космосу при президенте США, в котором подводились первые итоги американской космической программы в области «мирного» космоса и содержались предложения по программе работ на ближайшие годы: продолжить По-Леты по программе «Аполлон» (1970-1972); начать строительство обитаемой базы-станции на Луне (1980-1983); к 1977 году создать первую обитаемую станцию на околоземной орбите; в будущем осуществить космические полеты к ближайшим планетам - Марсу и Венере, а затем к Юпитеру и другим планетам Солнечной системы. Предложенная грандиозная космическая программа в целом так и не была выполнена, однако американцам удалось до декабря 1972 года отправить еще шесть лунных экспедиций.

К сожалению, нога советского человека так и не ступила на поверхность Луны. Наша лунная программа, начатая еще при С.П. Королеве, из-за аварий так и не была реализована. Четвертая (и последняя) попытка запуска ракеты Н-1 была предпринята 23 ноября 1972 года, а в феврале 1976 года в соответствии с решением ЦК КПСС и Совета Министров все работы по этому проекту были прекращены.

Выиграв «лунную гонку», американцы переориентировали космическую программу на создание и эксплуатацию долговременных орбитальных станций . Первая и единственная американская орбитальная станция «Скайлэб» была выведена на орбиту 14 мая 1973 года. На ней в течение года последовательно отработали три длительные экспедиции. После возвращения последней в феврале 1974 года работы со станцией были прекращены, а основное внимание было сосредоточено на проекте многоразовой транспортной космической системы «Спейс шаттл».

Проект «Спейс шаттл» был объявлен президентом Р. Никсоном в марте 1970 года. В отличие от предыдущих космических программ работы в данном направлении велись нормальными темпами и не ускорялись по политическим или идеологическим соображениям. Поэтому не случайно первый полет Шаттла состоялся спустя десять лет - только 12 апреля 1981 года. В ходе развития программы проявилась важная тенденция выравнивания, пересечения усилий в создании космической техники гражданского и военного назначения. При этом повысилась активность министерства обороны в поисках средств и методов более широкого использования в своих интересах космической техники, находящейся в распоряжении НАСА и других гражданских ведомств. Если в прошлом министерство обороны пыталось получить возможность создавать пилотируемые системы исключительно военного назначения, то в проекте «Спейс шаттл» ему удалось добиться долевого участия в финансировании и одновременно самого высокого удельного веса своих интересов в перспективных планах эксплуатации кораблей многоразового применения. Практически во всех полетах астронавты выполняли большой объем экспериментов в интересах военного ведомства, а начиная с 15-го полета, выполненного по секретной программе министерства обороны, стали регулярно планироваться космические полеты исключительно в военных целях. По собственному признанию американцев, многоразовая транспортная система «Спейс шаттл» экономически не оправдывает возлагающихся на нее надежд. По стоимости вывода в космос полезных грузов система проигрывает одноразовым ракетам-носителям9.

Решение о создании в Советском Союзе многоразовой космической системы появилось значительно позже: постановление ЦК КПСС и Совета Министров СССР «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплекса и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой 200 километров полезных грузов массой до 30 тонн и возвращение с орбиты грузов массой до 20 тонн» было принято в феврале 1976 года с одновременным закрытием всех работ по лунной программе.

Работы над программой «Энергия» - «Буран» потребовали громадной концентрации сил всей страны, но проект фактически оказался незавершенным. Многоразовый орбитальный корабль «Буран» первый и последний раз взлетел 15 ноября 1988 года. В беспилотном режиме, дважды обогнув земной шар, он приземлился на аэродром при сильнейшем боковом ветре с очень высокой точностью. Советский Союз доказал, что многоразовый ракетно-космический комплекс «Энергия» - «Буран» технически не уступает, а по некоторым параметрам и превосходит американский «Спейс шаттл». Закрыв свою лунную программу и втянувшись в очередную космическую гонку, СССР вложил в невостребованную многоразовую космическую систему «Энергия» - «Буран» огромные средства, которых так не хватало на развитие орбитальных научно-исследовательских комплексов.

Принятие в конце 60-х годов программы по разработке долговременных орбитальных станций типа «Салют», послуживших в дальнейшем научно-технической базой для орбитального научно-исследовательского комплекса «Мир», обусловливалось прежде всего успехами американцев в реализации пилотируемых полетов на Луну. Проект орбитальной станции, работы по которому проводились под руководством В.Н. Челомея, получил наименование «Алмаз». В проекте, разрабатывавшемся по техническому заданию Министерства обороны, предполагалось, что пилотируемая космическая станция «Алмаз» станет более совершенной для ведения космической разведки, чем беспилотные космические аппараты-разведчики. Для этого станция оснащалась бортовым разведывательным комплексом и лучшей на тот период времени системой датчиков, сопряженных с ЭВМ. Ее макеты появились уже в 1968 году. Однако в дальнейшем было принято решение о разработке «гражданских» космических лабораторий - долговременных орбитальных станций (ДОС) на базе уже созданных образцов «военной» станции «Алмаз». Первая ДОС успешно стартовала 19 апреля 1971 года и получила название «Салют». 7 февраля 1991 года последняя станция «Салют-7» вошла в плотные слои атмосферы и прекратила свое существование, а на орбите остался уникальный орбитальный научно-исследовательский пилотируемый космический комплекс «Мир», базовый блок которого был выведен 20 февраля 1986 года. История орбитального комплекса «Мир» закончилась спустя 15 лет, когда 23 марта 2001 года он был затоплен в южной части Тихого океана.

С помощью орбитальных станций «Салют» и «Мир» была осуществлена уникальная программа поэтапного обживания человеком околоземного космического пространства. Начиная со станции «Салют-6», советская космонавтика прочно заняла лидирующие позиции в области длительных космических полетов, а также по реализации международных космических программ . Орбитальный комплекс «Мир» стал настоящим летным полигоном для проверки многих технических решений и технологических процессов, используемых в настоящее время на международной космической станции. Во многом благодаря осуществлению космической программы орбитального комплекса «Мир» роль России в этом проекте сразу же стала во многом ведущей. Пройдя непростой этап противостояния двух сверхдержав в космосе, пилотируемая космонавтика на современном этапе наконец-то вышла на путь взаимовыгодного сотрудничества . В настоящее время идет успешная реализация проекта по международной космической станции. В соответствии с Соглашением между Российской Федерацией и Соединенными Штатами от 26 октября 1998 года предусматривается возможность использования как Россией, так и США собственных элементов международной космической станции в интересах национальной безопасности своих государств.

На рубеже тысячелетий Америка пересмотрела свою космическую политику, и в 1996 году появилась президентская директива ПДД-49 «Национальная космическая политика», согласно которой в 1999 году была разработана директива министра обороны США № 3100.00 «Космическая политика», предусматривающая: учет новых подходов и политических установок в соответствии с президентской директивой; отражение основных изменений в системе обеспечения международной безопасности, новых аспектов стратегии национальной безопасности и военной стратегии, изменений в формировании бюджета национальной обороны, в структуре вооруженных сил, опыта использования космических сил в боевых условиях, расширяющегося использования космических средств в глобальном масштабе, распространения технологий и информации, развития военных и информационных технологий, активизации коммерческой деятельности в космосе, расширения кооперации между гражданскими и военными секторами и международного сотрудничества; выработку структуры всеобъемлющей политики по осуществлению космической или связанной с космосом деятельности.

В современной военной политике США космос рассматривается такой же средой, как суша, море или воздух, в которой будут осуществляться боевые операции в интересах обеспечения национальной безопасности Соединенных Штатов. Приоритетными задачами космической и связанной с космосом деятельности являются обеспечение статуса свободы космоса и защита в нем интересов национальной безопасности США. В принятой космической политике важная роль отводится пилотируемой космонавтике: «Уникальные возможности, связанные с присутствием человека в космосе, могут быть в максимальной степени использованы практически для проведения в космосе исследований, разработок, испытаний и оценки параметров систем, а также более эффективного решения текущих и перспективных задач в интересах обеспечения национальной безопасности. Это охватывает также и возможность выполнения человеком в космосе задач военного характера, являющихся уникальными по сути или предпочтительными по критерию стоимость-эффективность для обеспечения боевых действий войск»10.

Принципы национальной космической политики, изложенные в ПДД-49, в дальнейшем были пересмотрены новой администрацией Белого дома. Именно таков смысл президентской директивы № 15 от 28 июня 2002 года, в соответствии с которой совет национальной безопасности и департамент науки и техники должны были рассмотреть текущую космическую политику и выработать рекомендации по ее коррекции. В настоящее время пилотируемая космонавтика США взяла курс на дальнейшее освоение околоземного пространства и ближайших планет Солнечной системы. Космическая деятельность в России отнесена к категории высших государственных приоритетов. Главным нормативно-правовым актом является Закон РФ «О космической деятельности» от 20 августа 1993 года с изменениями и дополнениями от 29 ноября 1996 года. Он регламентирует все основные стороны космической деятельности в России и увязан с требованиями международного права.

К основополагающим документам по осуществлению космической политики относятся «Основы политики Российской Федерации в области космической деятельности на период до 2010 года», утвержденные Президентом РФ В.В. Путиным 6 февраля 2001 года, и Концепция национальной космической политики Российской Федерации, утвержденная Постановлением Правительства РФ от 1 мая 1996 года. В них подчеркивается, что главными целями национальной космической политики на современном этапе являются: сохранение Россией статуса великой космической державы; эффективное использование и укрепление космического потенциала Российской Федерации в интересах развития науки и техники, повышения экономической и оборонной мощи страны; активное участие в международном сотрудничестве в области космической деятельности, направленном на решение глобальных проблем человечества.

Итак, военно-политический анализ развития пилотируемой космонавтики убедительно доказывает, что она была, есть и будет одним из важнейших факторов мирового развития и обеспечения национальной безопасности Российской Федерации. Ракетно-космическая отрасль, тесно и неразрывно связанная с наукой, доказала свою жизнеспособность даже в условиях глубокого экономического кризиса. Поэтому отечественной пилотируемой космонавтике сегодня, когда взят курс на освоение Луны и Марса, необходимо уделять самое пристальное внимание и делать все необходимое для ее развития.

Примечания:

    Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. М.: Машиностроение. 2002. С. 16.

    Стародубов В.П. Супердержавы XX века. Стратегическое противоборство. М.: ОЛМА-ПРЕСС, 2001. С. 33-53; Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. 2002. С. 9-21.

    Творческое наследие академика Сергея Павловича Королева: Избранные труды и документы. М.: Наука, 1980. С. 70.

    Хозин ПС. Великое противостояние в космосе (СССР - США). Свидетельства очевидца. М: Ве-че, 2001. С. 29.

    Международный геофизический год с участием ученых из 67 стран был организован Международным советом научных союзов ЮНЕСКО и продолжался с 1 июля 1957 года по 31 декабря 1958 года; основные пункты его научной программы по своим масштабам носили глобальный, планетарный характер.

    Эрике К.А. Космический полет: В 2 т. Т. 1 / Пер. с англ.: Ehricke Krafft A. Space Flight. Princeton, New Jer-sey - Toronto - New York - London. 1960. M.: Изд-во физ.-мат. литры, 1963. С. 71.

    U.S. News and World Report. January 31. 1958. P. 56-57.

    Wolfe Т. The Right Stuff. N.Y., 1980. P. 57.

    Черток Б. Е. Ракеты и люди. Лунная гонка. М.: Машиностроение, 1999. С. 506.

Последние материалы раздела:

Пельмени с белыми грибами — постные Пельмени из сухих грибов
Пельмени с белыми грибами — постные Пельмени из сухих грибов

Пошаговый фото рецепт приготовления пельменей с грибами. для начинки: грибы шампиньоны – 600-700 гр., лук репчатый – 1-2 шт., яйцо куриное – 2-3...

Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир
Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир

26 августа 1812 года решалась судьба России и русских людей. Сражение под Бородином у Л. Н. Толстого - это момент наивысшего напряжения, момент...

Плов из говядины пошаговый рецепт
Плов из говядины пошаговый рецепт

Интересует, как правильно приготовить плов из говядины? Сегодня это любимое блюдо в каждой семье. Часто можно встретить рецепты узбекского или...