Смешение газов при постоянном объеме. Смешение газов и паров, имеющих разные температуры. Основы химической термодинамики

Пусть в отдельных термостатированных сосудах под одинаковым давлением p находятся газы А и В , взятые в количествах имолей. При соединении этих сосудов произойдет самопроизвольное смешение газов вплоть до установления однородного состава газовой смеси по всему объему системы. Будем предполагать, что исходные газы и их смеси подчиняются уравнениям состояния идеальных газов. Тогда при сохранении постоянного общего давления газов p парциальные давления газов в образовавшейся смеси будут равны

При смешении идеальных газов тепловые эффекты отсутствуют, поэтому теплообмена между газами и термостатом не происходит, и изменение энтропии системы будет полностью определяться необратимостью процессов внутри системы.

Чтобы найти искомое изменение энтропии, необходимо противопоставить описанному самопроизвольному процессу мысленный равновесный переход между теми же начальным и конечным состояниями системы.

Для равновесного смешения газов воспользуемся специальным гипотетическим устройством, по аналогии с термостатомназываемым хемостатом. Это устройство состоит из термостатируемого цилиндра, снабженного перемещающимся без трения поршнем; в основании цилиндра находится избирательно проницаемая только для данного индивидуального химического вещества мембрана; последняя отделяет индивидуальное вещество, загруженное в хемостат, от изучаемой смеси веществ, находящейся в другом сосуде. В отличие от термостата, предназначенного для поддержания заданной температуры погруженного в него тела, либо для нагревания или охлаждения последнего в равновесном режиме, с помощью хемостата обеспечивают поддержание определенного значения химического потенциала данного индивидуального вещества в исследуемой смеси веществ, а также равновесный подвод и отвод вещества из смеси. Химический потенциал i -гохимического компонента в хемостате однозначно определяется температурой T и давлением, создаваемым на поршне. Изменяя давление на поршне, можно изменять направление перехода данного компонента через селективную мембрану: если – химический потенциал компонента в исследуемой смеси, то при вещество будет подводиться в смесь, при – выводиться из смеси, и при между хемостатом и смесью поддерживается химическое равновесие. Квазиравновесному изменению состава смеси соответствует диффузионный перенос вещества через мембрану под действием весьма малой разности значений химического потенциала по обе стороны мембраны.

Химический потенциал идеального газа, независимо от того, находится ли этот газ в индивидуальном состоянии или же в смеси с другими идеальными газами, выражается простым соотношением , где p i есть либо давление чистого газа, либо его парциальное давление в смеси. Поэтому при переносе идеального газа через полупроницаемую мембрану равновесие между смесью и хемостатом характеризуется равенством давления в хемостате и парциального давления газа в смеси.

Рис. 2.3. Равновесное смешение двух газов с помощью хемостатов: a – начальное состояние системы; б – состояние системы после изотермического расширения газов; в – конечное состояние после смешения газов через мембраны; 1 – хемостаты индивидуальных газов A и B ; 2 – полупроницаемые мембраны; 3 – сосуд для равновесного смешения газов.

Равновесное смешение идеальных газов A и B проведем в термостатируемой системе, состоящей из двух хемостатов индивидуальных компонентов A и B , соединенных с третьим сосудом – сборником образующейся смеси, снабженным, так же как и хемостаты, подвижным поршнем (рис. 2.3).

Пусть в начальный момент в хемостатах содержится соответственно молей компонента A и молей компонента B под одинаковым давлением p ; поршень в сборнике смеси находится в нулевой позиции (объем газа под поршнем равен нулю). Процесс смешения проводим в два этапа. На первом этапе совершаем обратимое изотермическое расширение газов A и B ; при этом давление A снижаем от p до заданного давления и давление B соответственно от p до . Объемы, занимаемые газами в первом и во втором хемостатах, изменятся соответственно от до и от до . Работа, совершенная расширяющимся газом в первом хемостате, равна ; во втором . Таким образом, на первом этапе в нашем гипотетическом устройстве производится суммарная работа . Так как при изотермическом расширении идеального газа его внутренняя энергия не изменяется, указанная работа осуществляется за счет эквивалентного подвода теплоты из термостата . Отсюда обратимое изменение энтропии в системе будет равно

На втором этапе процесса (собственно смешении) производим перепускание газов из хемостатов через селективные мембраны в сборник смеси путем синхронизированного движения трех поршней. При этом на каждом из поршней поддерживается постоянное давление, соответственно, и в хемостатах и в сборнике, что обеспечивает равновесный переход газов через мембраны (точнее говоря, в сборнике создается давление, чуть меньшее p , сохраняя отличную от нуля движущую силу диффузии через мембраны). Обратимость процесса смешения в данном случае обеспечивается возможностью синхронного изменения направления движения всех трех поршней, что приводило бы к обратному разделению смеси на индивидуальные компоненты. После завершения операции смесь, очевидно, займет в сборнике объем .

Так как в случае идеальных газов смешение не сопровождается каким-либо тепловым эффектом, теплообмен нашего устройства с термостатом на втором этапе операции отсутствует, . Следовательно, изменение энтропии системы на этом этапе не происходит, .

Полезно убедиться путем прямого подсчета, что работа газов на втором этапе равна нулю. Действительно, на перемещение поршней в хемостатах расходуется работа , в то же время в сборнике газами производится та же самая по величине работа . Отсюда .

Итак, суммарный прирост энтропии при смешении газов определяется выражением (2.9), . Если при равновесном варианте смешения этот прирост связан с обратным подводом теплоты и производством эквивалентного количества работы , то при прямом (необратимом) смешении газов этот же прирост энтропии происходит за счет ее генерации внутри системы; никакой работы система при этом не совершает.

После подстановки (2.8) выражение (2.9) можно переписать в виде

. (2.10)

Этому соотношению отводится обязательное место в курсах термодинамики ввиду его кажущейся парадоксальности. Примечательно, что для изменения энтропии (при смешении идеальных газов!) не имеет значения, что с чем смешивается, а также при каких давлении и температуре. По существу здесь приведен неформальный вывод (2.10).

Дополним вывод (2.10) его полезными следствиями. Вводя молярные доли компонентов и , получим выражение для изменения энтропии в расчете на 1 моль образующейся смеси:

. (2.11)

Максимум этой функции приходится на эквимолярную смесь газов, 0.5.

С точки зрения теории разделения смесей веществ представляет интерес проследить изменение производства энтропии при добавлении достаточно большого числа молей компонента B к одному молю компонента A . Полагая в (2.10) и , получим

При выводе (2.12) использовалось математическое представление логарифмической функции

.

Формула (2.12) показывает, что последовательное разведение смеси сопровождается бесконечным ростом энтропии в расчете на моль примесного компонента.

Формула (2.10) дает интегральную величину приращения энтропии при смешении конечных количеств газа. Для того, чтобы придти к компактному дифференциальному выражению, аналогичному формуле (2.7) для теплообмена, видоизменим модель смешения компонентов (см. рис. 2.4). Будем предполагать, что смешение происходит через проницаемую для обоих компонентов мембрану, либо через достаточно узкий вентиль, разделяющие сосуды, заполненные смесями A и B разного состава. Система термостатирована, и в обоих сосудах при помощи поршней поддерживается постоянное давление p . При ограниченной скорости смешения состав смеси в каждом из сосудов может считаться однородным по объему сосуда. Таким образом, данная система аналогична теплообменной системе со слабопроводящей перегородкой.

Смешение газов. Молекулярная и молярная (турбулентная) диффузия

Молекулярная диффузия - процесс взаимного проникновения молекул одного газа в другой, приводящий к образованию совершенной смеси, наблюдается в неподвижных газах и в ламинарных потоках.

При молекулярной диффузии смешение газов определяется тепловым движением молекул. Хотя скорость движения молекул W в среднем очень велика, длина пути свободного пробега / их мала. Поэтому молекулярная диффузия протекает достаточно медленно. Количество газа, диффундирующего из одного слоя в другой, по закону Фика равно

где - коэффициент молекулярной диффузии, м 2 /с; dC/dn -

градиент концентрации диффундирующего газа, кг/м 4 .

С повышением температуры D и интенсивность диффузии растут. Величину D можно определить по формуле Сезерленда в модификации Н.Д. Косова:

где Д)12 - коэффициент диффузии одного газа (1) в другой (2) газ при давлении p Q и температуре 7о; Q и С2 - коэффициенты Сезерленда для составляющих смеси, К (для метана С = 198, воздуха - 119, азота - 107, 0 2 - 138, С0 2 - 255, ); р 0 , Г 0 - значение соответственно давления и температуры при нормальных физических условиях (ро= 1,01 10 5 Па; Т 0 = 273 К).

Часто для определения коэффициента молекулярной диффузии D используется простая степенная формула

где п - эмпирический коэффициент

Зависимости для коэффициентов диффузии многокомпонентной смеси сложнее (см. , с. 80).

В турбулентном потоке диффузия, так же как теплопередача и внутреннее трение, связана с турбулентным переносом и смешением конечных макроскопических масс газа - турбулентных молей. Размеры этих молей и пути их перемещения до смешения разнообразны, имеется спектр значений этих величин. Движение молей носит пульсационный характер, скорости их перемещения - это скорости пульсаций поперек потока. При низких числах Re наблюдаются пульсации крупных масштабов, турбулентные скорости существенно меняются только на больших расстояниях. Под масштабом пульсации (турбулентности) понимают порядок длины, на которой происходит существенное изменение скорости. Частоты крупномасштабных пульсаций низкие.

С повышением Re наряду с крупномасштабными появляются и высокочастотные мелкомасштабные пульсации. Масштаб крупномасштабных пульсаций имеет порядок определяющих размеров системы (.D , Я канала или свободной струи и т.п.). Крупномасштабные пульсации определяют процессы турбулентного смешения: внутреннее трение, диффузию и теплопередачу. Мелкомасштабные пульсации осуществляют вязкую диссипацию. Энергия от крупномасштабных молей передается мелкомасштабным и диссипируется ими. Завершается перемешивание при турбулентной диффузии все же за счет молекулярной диффузии.

Пользуясь соображениями размерности и аналогией с процессами молекулярного переноса, вводят понятие коэффициента турбулентного переноса А Т, который характеризует внутреннее трение, диффузию и теплопередачу в турбулентном потоке:

где Г - масштаб турбулентности, длина перемещения турбулентного

моля до смешения (аналог /); - среднеквадратическая

пульсационная скорость.

Коэффициент А т является одновременно и коэффициентом турбулентной диффузии D T , турбулентной температуропроводностью а т и вязкостью щ. (v T). Он не зависит от свойств газа, определяется характеристиками турбулентности.

Подставляя (3.57) в (3.56), получаем формулу Прандтля

Соотношение (3.58) позволяет оценить коэффициенты переноса в турбулентном потоке. Для расчетов процессов переноса (диффузии) можно использовать соотношения (уравнения), относящиеся к молекулярным процессам, заменяя в них D, а, V на D T , а т, v x . При сопоставимом влиянии турбулентного и молекулярного переноса вводят суммарные коэффициенты.

Вообразим себе три горизонтальных слоя А, В и С нашего газового столба, причем слой В расположен выше А, а А - выше С. Всегда возмжно получить любое количество смеси состава А, смешав некоторый объем из слоя С с объемом из слоя В. Обратно, любое количество смеси состава А можно разложить на две смеси с составом В и С.

Это смешивание и разделение двух газов можно осуществить и обратимым путем, укрепив в А, В и С горизонтальные трубы. Тот конец каждой такой трубы, который выходит из газового столба наружу, закрывается поршнем. Будем теперь в слоях В и С вдвигать поршни внутрь, двигая их, скажем, слева направо, а в точке А, наоборот, будем выдвигать поршень наружу, т. е. справа налево. Тогда в В и С некоторые массы газа уйдут из столба, а в А, наоборот, поступит какой-то объем смеси. Мы примем, что в каждой такой трубе содержится некоторая масса смеси того же самого состава, что и горизонтальный слой газового столба, с которым сообщатся данная труба.

Значения определятся тогда из уравнений

Отсюда следует, что

Разделим теперь смесь каким-либо обратимым путем и подсчитаем затраченную работу.

Введем в А единицу объема смеси, а из В и выведем, соответственно, объемы

Вся работа, затраченная при этом процессе, равна

подставляя сюда значения видим, что эта работа равна нулю.

Здесь имеется некоторая тонкость: смеси В и на которые распалась смесь А, подняты на различную высоту и приобрели, таким образом, различную потенциальную энергию. Но раз работа равна нулю и температура системы постоянна, то это возможно лишь в том случае, если система отдала или получила некоторое количество теплоты. Зная изменение потенциальной энергии, найдем количество теплоты, сообщенное системе, а отсюда и изменение энтропии.

Приращение потенциальной энергии составит

но оно равно количеству теплоты, сообщенному системе, так что приращение энтропии будет равно

На такую величину сумма энтропий объема смеси В и объема смеси С больше энтропии единицы объема смеси А. Отсюда можно найти объемы смесей В и С, сумма энтропий которых равна энтропии единицы объема смеси А; для этого доведем объемы смесей В и С обратимым изотермическим путем до объемов и сумму приращений энтропий обеих смесей при этом процессе приравняем выражению (75), взятому с обратным знаком.

Приращение энтропии для смеси В составит

Подставим в уравнение (76) выражение для давлений через плотности

13.7. Термотрансформаторы

Зачастую для проведения технологического процесса необходимо поддерживать определенную температуру.

Простейший способ такой поддержки заключается в сжигании топлива и передаче теплоты от горячих продуктов сгорания либо непосредственно потребителю, либо промежуточному теплоносителю. При этом теплообмен происходит естественным путем от горячего источника с температурой Т 1 более холодному с температурой Т 2 . При этом способе большее количество теплоты, чем полученное при сгорании топлива, передать невозможно (а в связи с потерями оно значительно меньше).

Однако принципиально возможно, располагая некоторым количеством теплоты q " при высокой температуре Т 1 , получить без затраты работы большее количество теплоты при более низкой температуре Т 2 . Для этого достаточно осуществить обратимый прямой цикл Карно между источником с высокой температурой и окружающей средой с температурой Т с , в результате которого будет получена работа (см. (7.7)):

Затратив эту работу в обратном обратимом цикле Карно между средой с температурой T с и потребителем с температурой Т 2 , передадим последнему количество теплоты, равное

Подставив в это выражение значение работы l с из предыдущего выражения, получим:

где коэффициент пропорциональности ψ 1,2 называется коэффициентом преобразования теплоты от температуры Т 1 к температуре Т 2 .

Следовательно, получив q " количества теплоты от источника с температурой Т 1 , можно передать телу с температурой Т 2 количество теплоты ψ 1,2 q " .

Так как Т 2 T 1 , то и q " >q " .

Например, пусть t 1 = 1000 о С, t 2 = 50 о С, t с = 0 о С. Коэффициент . Таким образом, для того, чтобы получить, предположим, 5 Дж теплоты при температуре 50 о С, следует затратить лишь 1 Дж теплоты при 1000 о С, тогда как в обычной отопительной установке 1 Дж теплоты при высокой температуре переходит в такое же количество теплоты при низкой температуре.

Следовательно, с точки зрения термодинамики отопительная установка в 5 раз менее экономична, чем обратимая теплопреобразующая установка.

Устройство, позволяющее осуществлять прямой и обратный циклы теплопередачи от источника с одной температурой потребителю с другой температурой, называется термотрансформатором .

Если требуемая температура ниже исходной, то термотрансформатор называется понижающим .

Для поддержания более высокой температуры, чем исходная, требуется помощь повышающего термотрансформатора, для которого , так как Т 2 > T 1 .

Рис. 13.7 Рис. 13.8

Термотрансформатор представляет собой сочетание теплового двигателя и теплового насоса.

На рис. 13.7 представлена схема понижающего термотрансформатора, а на рис. 13.8 – его теоретический цикл.

На рис. 13.9 представлена схема повышающего термотрансформатора, а на рис. 13.10 – его теоретический цикл.

На рисунках: I – тепловой двигатель, II – тепловой насос.

Если термотрансформатор предназначен для поддержания температур и более низких, и более высоких, чем исходная, то он называется термотрансформатором смешанного типа .

Рис. 13.9 Рис. 13.10

Контрольные вопросы

    Как осуществляется обратный цикл Карно?

    Каким параметром оценивается термодинамическая эффективность теплонасосной установки?

    Чем отличаются принципиальные схемы теплонасосных и холодильных установок?

14. Смешение газов и паров

В различных устройствах часто приходится иметь дело со смешением различных газов, паров или жидкостей. В этом случае требуется определить параметры состояния смеси по известным параметрам состояния компонентов, составляющих эту смесь.

Решение этой задачи зависит от условий, при которых осуществляется этот процесс смешения. Все способы образования смесей можно разделить на три группы:

    смешение газов при постоянном объеме,

    смешение газовых потоков,

    смешение газов при заполнении резервуара.

14.1. Процесс смешения в постоянном объеме

Этот способ образования смеси состоит в том, что несколько газов с давлениями р 1 , р 2 , …, р n , температурами Т 1 , Т 2 , …, Т n и массами G 1 , G 2 , …, G n занимают различные объемы V 1 , V 2 , …, V n (рис. 14.1).

Если убрать разъединяющие перегородки между газами, то произойдет смешение газов, причем объем смеси

V = V 1 + V 2 + …+ V n ,

а масса смеси

G = G 1 + G 2 + …+ G n .

При установлении равновесного состояния параметры смеси будут р , v , T , u .

Так как процесс адиабатный и объем не изменился, то в соответствии с первым началом термодинамики сохраняется внутренняя энергия системы:

U = U 1 + U 2 + …+ U n или Gu = G 1 u 1 + G 2 u 2 + … + G n u n .

Отсюда удельная внутренняя энергия смеси определяется следующим образом:

, (14.1)

где g i – массовая доля i -го газа.

А удельный объем по своему определению равен

. (14.2)

Остальные параметры (р , Т ) для реальных газов, паров и жидкостей находятся из диаграмм для этих веществ.

В частном случае, когда смешиваются идеальные газы с постоянными теплоемкостями, для которых du = c v dT , получим

В том случае, когда смешиваются порции одного и того же газа, температура смеси вычисляется по более простой формуле:

.

Давление газа после смешения определяется по уравнению Клайперона–Менделеева

где R – газовая постоянная смеси (определена в разд. 1.4).

14.2. Процесс смешения потоков

В этом случае смешение газов происходит в результате соединения нескольких потоков в одном канале.

Пусть по трубопроводу 1 (рис. 14.2) в камеру смешения поступает газ с параметрами p 1 , v 1 , T 1 , h 1 , а по трубопроводу 2 – газ с параметрами p 2 , v 2 , T 2 , h 2 .

Расход газа через трубопровод 1 равен G 1 , через трубопровод 2 G 2 . На входе в камеру смешения эти газовые потоки дросселируются для того, чтобы давление в камере р было меньше, чем р 1 и р 2 (если бы, к примеру, р > р 1 , то газ из камеры смешения устремился бы в трубопровод 1 ).

Следует подчеркнуть, что давление р в камере смешения может быть выбрано различным (регулировкой вентилей); этим процесс смешения в потоке существенно отличается от смешения в постоянном объеме, где давление однозначно определяется параметрами смешиваемых газов.

Из камеры смешения газ с параметрами р , v, T отводится по трубопроводу 3 . Расход газа в трубопроводе 3 , очевидно, равен G = G 1 + G 2 .

Поскольку газ в трубопроводах движется, то, помимо внутренней энергии, он обладает (как целое) еще и кинетической и потенциальной энергией. Для простоты (для большинства технических задач она оправдана) будем считать, что

    трубопроводы расположены горизонтально, тем самым изменением потенциальной энергией можно пренебречь;

    скорости перемещения газа относительно малы, т.е. изменением кинетической энергией также пренебрежем.

Тогда согласно первому началу для адиабатного потока (9.3) при вышеперечисленных условиях имеем

Отсюда получим выражение для удельной энтальпии смеси, полученной в результате смешения в потоке:

. (14.3)

Зная удельную энтальпию h и давление р газа после смешения, с помощью диаграмм состояния можно найти остальные параметры смеси (Т , v , s и др.).

Для идеальных газов, заменяя удельную энтальпию выражением с р Т , получим

. (14.4)

В случае смешения двух потоков одного газа формула для температуры смеси упрощается:

. (14.5)

Зная определенную таким образом температуру Т , из уравнения состояния для идеального газа можно найти удельный объем:

Формулы (14.3)–(14.5) аналогично записываются и для произвольного числа смешивающихся потоков газов.

14.3. Смешение при заполнении объема

Пусть в резервуаре 1 (рис. 14.3) объемом V имеется газ (пар, жидкость) массой G 1 с параметрами р 1 , Т 1 . В этот резервуар поступает по трубопроводу 2 газ с параметрами р 2 , v 2 , Т 2 (очевидно, что р 2 > р 1) и массой G 2 , после чего вентиль закрывается. В резервуаре получается смесь газов объемом V и массой G = G 1 + G 2 . Необходимо определить параметры полученной смеси.

В процессе заполнения совершается работа проталкивания над газом в трубопроводе 2 , равная p 2 v 2 G 2 ; работа в резервуаре не происходит, поскольку объем резервуара постоянен.

В адиабатном процессе работа совершается за счет изменения внутренней энергии (как и прежде кинетической энергией втекающего газа пренебрегаем ввиду малости скорости течения):

Отсюда удельная внутренняя энергия смеси в сосуде равна

Удельный объем смеси по определению равен v = V / G .

Зная u и v , с помощью диаграмм находят остальные параметры смеси (р , Т , s , h ).

В случае смешения одного и того же идеального газа с постоянными теплоемкостями

где k – показатель адиабаты.

Давление в резервуаре после смешения равно

Смешиваются две порции воздуха, причем масса первого компонента – 10 кг, а его температура – 400 о С, а масса второго компонента – 90 кг, а температура – 100 о С. Определить температуру смеси при различных способах смешения.

Решение: температура смеси в результате процесса смешивания при постоянном объеме или процесса смешения в газовом потоке будет определяться по формуле t = g 1 t 1 +g 2 t 2 . И в нашем примере равна t = 0,1 ∙ 400 + 0,9 ∙ 100 = 130 о С.

Если смесь получается в результате заполнения объема, в котором уже находится первый газ, то ее абсолютная температура вычисляется по формуле T = g 1 T 1 +kg 2 T 2 . В рассматриваемом примере показатель адиабаты воздуха k = 1,4 , а температура смеси равна t = 0,1 (400 +273) +1,4 ∙ 0,9 ∙ (100 +273) – 273 = 264 о С.

14.4. Изменение энтропии при смешении

Энтропия смеси представляет собой сумму энтропий составляющих эту смесь, т.е.

или в удельных величинах

Так как процесс смешивания – процесс необратимый, то энтропия термодинамической системы (все участвующие в адиабатном смешивании вещества) согласно второму началу термодинамики в этом процессе будет возрастать, т.е.

Необратимость процесса смешения объясняется сопровождающей этот процесс диффузией смешивающихся компонент. Увеличение энтропии в процессе смешивания является мерой этой необратимости.

Контрольные вопросы

    Какие известны основные способы смешения?

    Какими способами задается смесь?

    Как определить температуру смеси при различных способах смешения?

    Чем объяснить, что при адиабатном смешении газов или паров энтропия смеси увеличивается?

15. Основы химической термодинамики

Неоднородная система определяется составом своих компонент. При определенных условиях этот состав может изменяться за счет происходящих в системе химических и физико-химических превращениях, при которых происходит разрушение старых и возникновение новых связей между атомами. Эти процессы сопровождаются выделением или поглощением энергии в результате действия сил этих связей.

Химическая термодинамика рассматривает применение первого и второго начал термодинамики к химическим и физико-химическим явлениям.

15.1. Химические реакции

Химическое вещество – это макроскопическое тело определенного химического состава, т.е. тело, в отношении которого известно не только, из каких химических элементов и в какой пропорции оно состоит (индивидуальное химическое вещество ), но также известно, из каких соединений химических элементов оно образовано (смесь или раствор ).

Химическое вещество (соединение) обычно характеризуется химической формулой, показывающей, из каких элементов оно состоит и в каком отношении атомы этих элементов соединяются при его образовании.

Процессы взаимодействия между отдельными химическими веществами, ведущие к образованию новых веществ, называются химическими реакциями .

Любая химическая реакция может происходить как в прямом, так и обратном направлениях.

В закрытых системах химические реакции происходят таким образом, что общее количество каждого из химических элементов, представленных в системе, не изменяется. По этой причине в химических реакциях участвуют не произвольные количества веществ, а стехиометрические их количества , т.е. количества, соответствующие химическим формулам веществ. Поэтому химические реакции записываются в виде равенств между химическими формулами участвующих в реакции веществ и химическими формулами продуктов этой реакции. Пусть А 1 , А 2 , …, А n – исходные вещества, а В 1 , В 2 , …, В m – конечные продукты реакции. Тогда химическая реакция между веществами А 1 , А 2 , …, А n , приведшая к образованию веществ В 1 , В 2 , …, В m , запишется в виде равенства:

в котором α 1 , α 2 , … α n , β 1 , β 2 … β m – стехиометрические коэффициенты. Например, в результате сгорания метана образуется углекислый газ и вода:

СН 4 + 2О 2 = СО 2 + 2Н 2 О.

За единицу количества вещества в химии принимается 1 моль. В этом количестве содержится строго определенное число молекул (атомов) данного вещества, равное постоянной Авогадро N A = 6,02204∙10 23 . Другими словами: 1 моль вещества определяется как такое количество вещества, масса которого в граммах равна его молекулярной (атомной) массе М.

Состав сложных систем, образованных из многих веществ, количество каждого из которых составляет n i молей, в химии задается мольными долями компонент системы.

  • Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика - ВСХ)
  • Возбудители газовой анаэробной инфекции. Характеристика их свойств. Патогенез заболевания. Микробиологический диагноз. Специфическая профилактика и терапия.
  • Вопрос. Вещественный состав нефти и природных газов. Основные свойства и промышленные классификации нефти(Билет№6)
  • Время защитного действия по СДЯВ для гражданских противогазов ГП-7, ГП-5, ГП-5М (мин.)
  • 1. Смешение газов при V=const. Если суммарный объем, занимаемый газами до и после смешения, остается неизменным и газы до смешения занимают объемы V 1 , V 2 ,….. V n м 3 при давлениях р 1 , р 2 , р n и температурах Т 1 , Т 2 , Т n , а отношение теплоемкостей этих газов с р /с v равны k 1 , k 2 ,…. k n , то параметры смеси определяют по формулам:

    температура

    давление

    (5.15)

    Для газов, у которых мольные теплоемкости равны, а следовательно, равны и значения k, формулы (62) и (63) принимают вид:

    2. Смешение газовых потоков. Если массовые расходы смешивающихся потоков равны М 1 , М 2 ,… М n , кг/ч, объемные расходы- V 1 , V 2 ,….. V n м 3 /ч, давления газов - р 1 , р 2 , р n и температуры - Т 1 , Т 2 ,…Т n , а отношения теплоемкостей отдельных газов равны соответственно k 1 , k 2 ,…. k n , то температуры смеси определяют по формуле:

    (5.18)

    Объемный расход смеси в единицу времени при температуре Т и давлении р:

    (5.19)

    Для газов, у которых значения k равны, температуру смеси определяют по формуле (64). Если газовые потоки, помимо одинаковых значений k, имеют также давления, то формулы (66) и (67) принимают вид:

    (5.21)

    Задачи

    5.1. Найти изменение внутренней энергии 1 кг воздуха при переходе его от начального состояния t 1 =300 0 С до конечного при t 2 =50 0 С. Зависимость теплоемкости от температуры принять линейной. Ответ дать в кДж.

    Изменение внутренней энергии найдено по формуле (5.9):

    Du=С vm (t 2 -t 1).

    Пользуясь табл. 4.3, получим для воздуха

    (С vm) 0 t =0.7084+0.00009349t кДж/(кг К);

    (С vm) 50 300 =0.7084+0.00009349(50+300)=0.7411 кДж/(кг К).

    Следовательно,

    Du=0.7411(50-300)= - 185.3 кДж/кг

    Ответ: DU = - 185.3 кДж/кг

    5.2. Найти изменение внутренней энергии 2 м 3 воздуха, если температура его понижается от t 1 =250 0 С до t 2 =70 0 С. Зависимость теплоемкости от температуры принять линейной. Начальное давление воздуха Р 1 =0.6 МПа.

    Ответ: DU=-1063 кДж.

    5.3. К газу, заключенному в цилиндре с подвижным поршнем, подводится извне 100 кДж теплоты. Величина произведенной работы при этом составляет 115 кДж. Определить изменение внутренней энергии газа, если количество его равно 0.8 кг.

    Ответ: DU= - 18.2 кДж.

    5.4. 2 м 3 воздуха при давлении 0.5 МПа и температуре 50 0 С смешиваются с 10 м 3 воздуха при давлении 0.2 МПа и температуре 100 0 С. Определить давление и температуру смеси.



    Ответ: t см =82 0 С; Р см =0.25 МПа.

    5.5. В сборном газоходе котельной смешиваются уходящие газы трех котлов, имеющие атмосферное давление. Для упрощения принимается, что эти газы имеют одинаковый состав, а именно: CO 2 =11.8 %; O 2 =6.8 %; N 2 =75.6 %; H 2 O=5.8 %. Часовые расходы газов составляют V 1 =7100 м 3 /ч; V 2 =2600 м 3 /ч; V 3 =11200 м 3 /ч, а температуры газов соответственно t 1 =170 0 С, t 2 =220 0 С, t 3 =120 0 С. Определить температуру газов после смешения и их объемный расход через дымовую трубу при этой температуре.

    Ответ: t=147 0 С; V=20900 м 3 /ч.

    5.6. Уходящие газы из трех паровых котлов при давлении 0.1 МПа смешиваются в сборном газоходе и через дымовую трубу удаляются в атмосферу. Объемный состав уходящих газов из отдельных котлов следующий: из первого

    СО 2 =10.4 %; О 2 =7.2 %; N 2 =77.0%; H 2 O=5.4 %;

    из второго

    СО 2 =11.8 %; O 2 =6.9 %; N 2 =75.6 %; H 2 O=5.8 %;

    из третьего

    CO 2 =12.0 %; O 2 =4.1 %; N 2 =77.8 %; H 2 O=6.1 %.

    Часовые расходы газов составляют

    М 1 =12000 кг/ч; М 2 =6500 кг/ч; М 3 =8400 кг/ч; а температуры газов соответственно t 1 =130 0 С; t 2 =180 0 С; t 3 =200 0 С.



    Определить температуру уходящих газов после смешения в сборном газоходе. Принять, что мольные теплоемкости этих газов одинаковы.

    Ответ: t 2 =164 0 С.

    5.7. В газоходе смешиваются три газовых потока, имеющих одинаковое давление, равное 0.2 МПа. Первый поток представляет собой азот с объемным расходом V 1 =8200 м 3 /ч при температуре 200 0 С, второй поток -двуокись углерода с расходом 7600 м 3 /ч при температуре 500 0 С и третий поток - воздух с расходом 6400 м 3 /ч при температуре 800 0 С. Найти температуру газов после смешения и их объемный расход в общем газопроводе.

    Ответ: t 1 =423 0 С; V=23000 м3/ч.

    5.8. Продукты сгорания из газохода парового котла в количестве 400 кг/ч при температуре 900 0 С должны быть охлаждены до 500 0 С и направлены в сушильную установку. Газы охлаждаются смешением газового потока с потоком воздуха при температуре 20 0 С. Давление в обоих газовых потоках одинаковое. Определить часовой расход воздуха, если известно, что R газ = R возд. Теплоемкость продуктов сгорания принять равной теплоемкости воздуха.

    Ответ: М возд = 366 кг/ч.

    Последние материалы раздела:

    Пельмени с белыми грибами — постные Пельмени из сухих грибов
    Пельмени с белыми грибами — постные Пельмени из сухих грибов

    Пошаговый фото рецепт приготовления пельменей с грибами. для начинки: грибы шампиньоны – 600-700 гр., лук репчатый – 1-2 шт., яйцо куриное – 2-3...

    Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир
    Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир

    26 августа 1812 года решалась судьба России и русских людей. Сражение под Бородином у Л. Н. Толстого - это момент наивысшего напряжения, момент...

    Плов из говядины пошаговый рецепт
    Плов из говядины пошаговый рецепт

    Интересует, как правильно приготовить плов из говядины? Сегодня это любимое блюдо в каждой семье. Часто можно встретить рецепты узбекского или...