Как соорудить лопасти для ветрогенератора своими руками: примеры самостоятельного изготовления лопастей для ветряка. Ветрогенератор с вертикальным ротором Расположение лопастей

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.
Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

, ветрогенераторы , мельницы , гидро- и пневмоприводы).

В нагнетательных машинах лопасти или лопатки перемещают поток. В приводных - поток жидкости или газа приводит в движение лопасти или лопатки.

Принцип действия

В зависимости от величины перепада давления на валу может находиться несколько ступеней давления.

Основные типы лопаток

Лопаточные машины, в качестве наиболее важного элемента содержат находящиеся на валу диски, оснащенные профилированными лопатками. Диски, в зависимости от типа и назначения машины, могут вращаться с абсолютно разными скоростями , составляющими от единиц оборотов в минуту у ветрогенераторов и мельниц, до десятков и сотен тысяч оборотов в минуту у газотурбинных двигателей и турбонагнетателей.

Лопатки современных лопаточных машин, в зависимости от назначения, выполняемой данным устройством задачи и среды, в которой они работают, имеют самую различную конструкцию. Эволюция этих конструкций прослеживается при сравнении лопаток средневековых мельниц - водяной и ветряной, с лопатками ветродвигателя и гидротурбины ГЭС .

На конструкцию лопаток влияют такие параметры, как плотность и вязкость среды, в которой они работают. Жидкость гораздо плотнее газа, более вязкая и практически несжимаема. Поэтому форма и размеры лопаток гидравлических и пневматических машин сильно отличается. Из-за разности объёмов при одинаковом давлении, площадь поверхности лопаток пневматических машин может быть в несколько раз больше лопаток гидравлических.

Различают рабочие, спрямляющие и поворотные лопатки. Кроме того, в компрессорах могут быть направляющие лопатки, а также входные направляющие лопатки, а в турбинах - сопловые лопатки и охлаждаемые.

Конструкция лопатки

Для каждой лопатки характерен собственный аэродинамический профиль. Обычно он напоминает крыло летательного аппарата . Самое существенное отличие лопатки от крыла состоит в том, что лопатки работают в потоке, параметры которого очень сильно изменяются по её длине.

Профильная часть лопатки

По конструкции профильной части лопатки подразделяются на лопатки постоянного и переменного сечений . Лопатки постоянного сечения применяются для ступеней, в которых длина лопатки не более одной десятой среднего диаметра ступени. В турбинах большой мощности это, как правило, лопатки первых ступеней высокого давления. Высота этих лопаток невелика и составляет 20–100 мм.

Лопатки переменного сечения имеют переменный профиль на последующих ступенях, причём площадь поперечных сечений плавно уменьшается от корневого сечения к вершине. У лопаток последних ступеней это соотношение может достигать 6–8. Лопатки переменного сечения всегда имеют начальную закрутку, то есть углы, образованные прямой, соединяющей кромки сечения (хордой), с осью турбины, называемыми углами установки сечений. Эти углы, из соображений аэродинамики, по высоте задаются различными, с плавным увеличением от корня к вершине.

Для относительно коротких лопаток углы закрутки профиля (разность между углами установки периферийного и корневого сечений) составляют 10–30, а для лопаток последних ступеней могут достигать 65–70.

Взаимное расположение сечений по высоте лопатки при образовании профиля и положение этого профиля относительно диска представляет собой установку лопатки на диске и должно удовлетворять требованиям аэродинамики, прочности и технологичности изготовления.

Лопатки в основном изготавливаются из предварительно отштампованных заготовок . Также применяются методы изготовления лопаток точным литьём или точной штамповкой . Современные тенденции повышения мощности турбин требуют увеличения длины лопаток последних ступеней. Создание таких лопаток зависит от уровня научных достижений в области аэродинамики потока, статической и динамической прочности и наличия материалов с необходимыми свойствами.

Современные титановые сплавы позволяют изготовить лопатки длиной до 1500 мм . Но в этом случае ограничением является прочность ротора, диаметр которого приходится повышать, но тогда необходимо уменьшать длину лопатки для сохранения соотношения из соображений аэродинамики, иначе увеличение длины лопатки неэффективно. Поэтому существует ограничение длины лопатки, больше которой она не может эффективно работать.

  1. Гребешки лабиринтного уплотнения радиального зазора
  2. Бандажная полка
  3. Гребешки торцевого лабиринтного уплотнения
  4. Отверстие для подвода охлаждающего воздуха во внутренние каналы охлаждаемой лопатки

Хвостовая часть лопатки

Конструкции хвостовых соединений и, соответственно, хвостовиков лопатки весьма разнообразны и применяются исходя из условий обеспечения необходимой прочности с учётом освоения технологий их изготовления на предприятии, изготавливающем турбины. Виды хвостовиков: Т-образные, грибовидные, вильчатые, ёлочные и др.

Ни один вид хвостовых соединений не имеет особого преимущества над другим - у каждого есть свои преимущества и недостатки. Разными заводами изготавливаются разные типы хвостовых соединений, и каждый из них использует свои технологии изготовления.

Основные типы хвостовиков лопаток: 1. Т-образный хвостовик; 2. Грибовидный хвостовик; 3. Вильчатый хвостовик; 4. Ёлочный хвостовик

Связи

Рабочие лопатки турбин соединяются в пакеты связями различной конструкции: бандажами, приклёпанными к лопаткам или выполненными в виде полок (цельнофрезерованный бандаж); проволоками, припаянными к лопаткам или свободно вставленными в отверстия в профильной части лопаток, и прижимающимися к ним центробежными силами; с помощью специальных выступов, свариваемых друг с другом после наборки лопаток на диск.

Элементы сборки лопаток: 1.Перо лопатки; 2. Полка; 3. Хвостовик; 4. Бандажная трубка

Лопатки паровых турбин

Разница размеров и формы лопаток на разных ступенях давления одной турбины

Назначение лопаток турбин - превращение потенциальной энергии сжатого пара в механическую работу . В зависимости от условий работы в турбине длина её рабочих лопаток может колебаться от нескольких десятков до полутора тысяч миллиметров. На роторе лопатки расположены ступенчато, с постепенным увеличением длины, и изменением формы поверхности. На каждой ступени лопатки одинаковой длины расположены радиально оси ротора. Это обусловлено зависимостью от таких параметров, как расход, объём и давление.

При равномерном расходе давление на входе в турбину максимальное, расход минимален. При прохождении рабочим телом через лопатки турбины совершается механическая работа, давление уменьшается, но увеличивается объём. Следовательно, увеличивается площадь поверхностей рабочей лопатки и, соответственно, её размер. Например, длина лопатки первой ступени паровой турбины мощностью 300 МВт составляет 97 мм, последней - 960 мм.

Лопатки компрессоров

Назначение лопаток компрессоров - изменение начальных параметров газа и превращение кинетической энергии вращающегося ротора в потенциальную энергию сжатого газа. Форма, размеры и способы закрепления на роторе лопаток компрессоров не особо отличаются от лопаток турбин. В компрессоре при одинаковом расходе газ сжимается, его объём уменьшается, а давление возрастает, поэтому на первой ступени компрессора длина лопаток больше, чем на последней.

Лопатки газотурбинных двигателей

В газотурбинном двигателе есть и компрессорные, и турбинные лопатки. Принцип действия такого двигателя - сжатие воздуха, необходимого для горения, с помощью лопаток турбокомпрессора, направления этого воздуха в камеру сгорания и, при воспламенении с топливом - механическая работа продуктов сгорания на лопатках турбины, расположенной на одном валу с компрессором. Этим газотурбинный двигатель отличается от любой другой машины, где имеются либо компрессорные нагнетающие лопатки, как в нагнетателях и воздуходувках всякого рода, либо турбинные лопатки, как у паротурбинных силовых установок или на гидроэлектростанциях.

Лопатки (лопасти) гидротурбин

Диск с лопатками гидротурбины

Лопасти ветротурбины

По сравнению с лопатками паровых и газовых турбин лопатки гидротурбин работают в среде с малыми скоростями, но высокими давлениями. Здесь длина лопатки невелика относительно её ширины, а иногда ширина больше длины в зависимости от плотности и удельного объёма жидкости. Часто лопатки гидротурбин бывают приварены к диску или могут изготавливаться целиком с ним.

Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.

Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Мы расскажем, какая форма лопастей эффективнее, и поможем подобрать подходящий чертеж для ветровой электростанции.

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Работа ветряной электростанции оценивается по КИЭВ – коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии

Подразделяют две основные разновидности ветряных генераторов:

  • горизонтальные.

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы

Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха.

Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Какая форма лопасти является оптимальной?

Один из главных элементов ветрогенератора – комплект лопастей.

Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

  • размер;
  • форма;
  • материал;
  • количество.

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота.

Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы.

Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой – пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Из чего делают лопасти в домашних условиях?

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.

Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.

Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Алюминий – тонкий, легкий и дорогой

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.

Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Стекловолокно или стеклоткань – для профессионалов

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.

Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.

Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.


Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.


Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дешево и сердито: деревянная деталь для ветроколеса

Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

Чертежи и примеры лопастей

Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно.

Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.

Чертеж лопасти для двухлопастного винта. Изготавливается из канализационной трубы 110 диаметра. Диаметр винта ветряка в данных расчетах – 1 м

Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.

Чертеж лопасти для трехлопастного винта ветрогенератора из трубы 160 мм диаметра. Расчетная быстроходность в этом варианте – 5 при ветре 5 м/с

Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.

Чертеж самодельной лопасти для 5-ти лопастного винта ветрогенератора. Изготавливается из трубы ПВХ диаметром 160 мм. Расчетная быстроходность – 4

Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.

По таблице видно, что чем больше крыльев у ветрогенератора, тем меньше должна быть их длина для получения тока одинаковой мощности

Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.

С правилами и принципами ознакомит статья, в которой пошагово изложен процесс производства вычислений.

Выполнение балансировки ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать , узнаете, ознакомившись с рекомендованной нами статьей.

Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

Приходится , опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка - устройство лопастей.

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются , напоминающие своими формами самолет с пропеллером. Винт - это крыльчатка ветряка, хвост - устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает . Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка - крыльчатка . Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием - чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Выбор вида

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки - создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Расчет лопастей

На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.

Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:

Как вариант, можно использовать онлайн-калькулятор , позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.

Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.

Материал для изготовления

Прежде, чем начать работы по созданию крыльчатки , надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:

  • прочность
  • малый вес
  • легкость обработки
  • возможность придания нужной формы или наличие ее у заготовки
  • доступность

Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.

Трубы ПВХ

Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.

Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.

Алюминий

Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий . При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.

Затрудняет работу и форма материала - чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.

Стекловолокно

Такой выбор - для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:

  • изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
  • изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
  • подобным образом изготавливается вторая половина лопасти
  • после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице

Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.

Древесина

Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей - задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.

Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.

Древесина обладает массой отрицательных качеств - она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.

Создание лопастей поэтапно

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм - ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине - 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

Последние материалы раздела:

Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир
Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир

26 августа 1812 года решалась судьба России и русских людей. Сражение под Бородином у Л. Н. Толстого - это момент наивысшего напряжения, момент...

Плов из говядины пошаговый рецепт
Плов из говядины пошаговый рецепт

Интересует, как правильно приготовить плов из говядины? Сегодня это любимое блюдо в каждой семье. Часто можно встретить рецепты узбекского или...

Гадания думает ли он. Гадания на картах
Гадания думает ли он. Гадания на картах

ПОДЕЛИЛИСЬ Когда мы влюблены, то часто вспоминаем объект своей симпатии и, естественно, нам становится интересно, взаимно ли наше чувство и что...