Срок службы электродвигателя. Нагрев электродвигателей, его причины и влияние на срок службы Какой срок эксплуатации электродвигателя постоянного

ВВЕДЕНИЕ

Работа электрика по обслуживанию электрооборудования сводится к поддержанию работоспособного и безопасного состояния электрических машин, пускозащитных аппаратов, устройств освещения, сигнализации и автоматики, что все и называется электрооборудованием, а также проводов, кабе­лей, разъемов, зажимов, электромонтажных изделий и т. д.

В состав устройств могут входить различные элементы, например, резисторы, конденсаторы, полупроводниковые при­боры. Электрик должен быть знаком со всеми этими элемен­тами, аппаратами и устройствами, но при работе он встречает много вопросов и затруднений, особенно в молодом возрасте, когда мало опыта. Полезно все эти вопросы, и затруднения не спеша проанализировать с книгой, но таких книг пока недоста­точно.

Целью данной работы является знакомство с электрооборудованием и электродвигателями, составляющими часть элек­троустановок (их устройством), назначением, а также мерами безопасности, безотказности, увели­чения срока службы. В этом смысле имеет большое значение знание всех отказов при работе в различных частях электроустановки, по­исков и методов устранения отказов, что подробно представ­лено ниже.

Практически во всех областях деятельности современ­ного общества применяется электрическая энергия.

Энергия - общая количественная мера различных форм движения материи. Для любого вида энергии мож­но назвать материальный объект, который является ее носителем. Так, механической энергией обладают вода, ветер, заведенная пружина; тепловой - нагретый газ, пар, горячая вода. Носителем электрической энергии является особая форма материи - электромагнитное поле.

Электрическая энергия получается путем преобра­зования других видов энергии (механической, тепловой, химической, ядерной и др.) и обладает ценными свой­ствами: относительно несложно, с малыми потерями передается на большие расстояния, легко дробится и пре­образуется в нужный вид энергии (механическую, тепло­вую, световую, химическую и др.).

Наибольшая часть электроэнергии для нужд народного хозяйства вырабатывается на тепловых электростанциях (ТЭС). Здесь химическая энергия органического топлива (угля, мазута, торфа, газа) при его сжигании в паровых котлах превращается в тепловую энергию нагретого водяного пара. Пар под высоким давлением поступает в паровую турбину, где его энергия преобразуется в механическую. Турбины приводят в действие электриче­ские генераторы, преобразующие механическую энергию в электрическую.

Следует отметить, что электродвигатели являются основным источником и потребителями электроэнергии. Учитывая быстрое истощение запасов органического топлива и неблагоприятное воздействие ТЭС на окружающую среду, существует необходимость в экономических разработках электропривода.

Электропривод-это совокупность устройств, приводящих в движение производственные машины и установки при помощи электрических двигателей.

Электропривод состоит из одного или нескольких двигателей, передаточного механизма, необходимого для передачи движения от двигателя к рабочей машине (зубчатого редуктора, ременной передачи и т. п.), и устрой­ства управления, служащего для пуска, остановки и регу­лирования привода.

В большинстве случаев работа электроприводов автоматизируется, начиная с относительно простых операций дистанционного пуска и остановки и кончая выполнением функций регулирования и управления слож­ными взаимосвязанными комплексами различных произ­водственных механизмов.

Автоматическое управление электроприводами, составляющее основу автоматизи­рованного производства, дает возможность увеличить производительность силовой установки.

В соответствии с Основными направлениями эконо­мического и социального развития РБ на 2006- 2010 годы и на период до 2016 года выработка элект­роэнергии в 1990 г. Должна составить 1910-2000 млрд кВт ч.

Для ускорения научно-технического прогресса боль­шое значение имеет автоматизация производственных процессов, осуществляемая на базе электротехники и электроники. К 2007 г. предусматривается резко повысить уровень автоматизации производства (в сред­нем в 2 раза). В промышленности намечено ввести 5,1 тыс. автоматизированных систем управления технологическими процессами.

Предполагается создание и освоение новых поколений электронных вычислительных машин (ЭВМ) всех классов от супер-ЭВМ до персональных для школьного обучения. Применение микропроцессоров и микроЭВМ позволяет создавать гибкие автоматизи­рованные системы управления технологическими процес­сами, электроприводом и электродвигателями, что дает возможность обеспечивать оптимальное выполнение производ­ственных программ. Прокопчик

Игорь Леонидович г. Осиповичи ОЗАА

2. Эксплуатация электродвигателей.

2.1 Назначение электродвигателей.

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую - осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока (частоты, числа фаз переменного тока, напряжения постоянного тока) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В работе будут описаны принципы и характеристики работы двигателей электропривода, согласно заданной темы и выполненных работ по изучению основ электропривода.

В зависимости от рода тока электроустановки, в которой должна работать электрическая машина, они делятся на машины постоянного и переменного тока.

Машины переменного тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также коллекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.

2.1.1 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Асинхронные двигателя

Устройство асинхронного двигателя. Двига­тель состоит из двух основных частей, разделенных воз­душным зазором: неподвижного статора 6 и вращающего­ся ротора 3. Каждая из этих частей имеет сердечник и обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние, иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус статора служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях в корпус устанавливают обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние - иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус и статор служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях корпус

отливают из алюминиевого сплава, стали или чугуна, а в крупных машинах делают сварным. В корпус статора за­прессован сердечник 2, который с целью уменьшения по-терь от вихревых токов собирается из изолированных друг от друга лаком листов электрической стали (рис. 8.7,6). В пазы сердечника уложены проводники обмотки статора, которая выполняется из медного провода. Основным элементом обмотки является секция, которая может иметь" один или несколько витков.

Активные стороны секций укладывают в пазы сердечника статора, например сторону / укладывают в первый паз, а сторону 4 секции - в четвертый паз. Секции соединяют между собой в катушки, из которых состоят обмотки каждой фазы. Начала С1, С2, С3 и концы С4, С5, С6 фазных обмоток присоединяют к зажимам коробки выводов (рис. 8.9, а). Для упрощения переключения схем У и д зажимы обмотки статора располагают в порядке, указан­ном на рис. 8.9, а.

Ротор асинхронного двигателя состоит из сердечника 3 обмотки 4 и вала 5. Вал ротора устанавливается в подшипниках, запрессованных в под­шипниковых щитах 7, прикрепленных болтами к корпусу статора, и служит для передачи вращающего момента производственному механизму. Сердечник ротора имеет цилиндрическую форму и собирается из листов электро­технической стали.

В двигателях с короткозамкнутым ротором обмотка ротора состоит из ряда алюминиевых стержней (располагаемых в пазах сердечника ротора), замкнутых по торцам кольцами. В этих двигателях мощностью до 400 кВт обмотку ротора выполняют заливкой его пазов под давлением расплавленным алюминием.

Асинхронные двигатели - наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает. Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, краново-металлургические и др.

ЭНЕРГОСБЕРЕЖЕНИЕ Ведущие фирмы-производители выпускают энергосберегающие стандартные асинхронные двигатели мощностью 15-30 кВт и более. В этих двигателях потери электроэнергии снижены не менее чем на 10 % по сравнению с ранее производимыми двигателями с "нормальным" КПД (h). При этом КПД энергосберегающего двигателя можно определить

как hэ = h / , (1) где е - относительное снижение суммарных потерь в двигателе.

Очевидно, производство энергосберегающих электродвигателей связано с дополнительными затратами, которые можно оценить с помощью коэффициента удорожания

Ку = 1 + (1 - h) е2.100 (2)

Результаты расчетов показывают, что дополнительные затраты, связанные с приобретением энергосберегающих электродвигателей, окупаются за счет экономии электроэнергии за 2-3 года в зависимости от мощности двигателя. При этом срок окупаемости более мощных двигателей меньше, так как эти двигатели имеют большую годовую наработку и более высокий коэффициент загрузки.

В ряде стран вопросы энергосбережения в стандартных асинхронных двигателях связывают не столько со снижением эксплуатационных затрат, сколько с экологическими проблемами, обусловленными производством электроэнергии. В Российской Федерации Владимирский электромоторный завод начиная с 1998 г. выпускает энергосберегающие двигатели 5А280 и с 1999 г. 5А315 мощностью от 110 до 200 кВт, с 200 г.энергосберегающие двигатели 5А355 мощностью 315 кВт, а с 2003 готовиться к выпуску асинхронных двигателей серии 6А.

ПОВЫШЕНИЕ РЕСУРСА. СНИЖЕНИЕ УРОВНЯ ШУМА .

С энергосбережением - уменьшением потерь в асинхронном двигателе - неразрывно связано повышение его ресурса вследствие снижения температуры его обмоток. При применении системы изоляции класса нагревостойкости F (qб = 100°С и qб - q = 20°С, где qб и q - превышение температуры обмоток над температурой окружающей среды, соответствующее базовому ресурсу и фактическое) теоретический ресурс системы изоляции обмотки увеличивается в 4 раза согласно известному соотношениюТсл = Тсл.б ехр [-0,1 ln2 (qб - q)] , где

Тсл и Тсл.б - средний и базовый ресурсы системы изоляции обмоток, причем Тсл.б = 20.103 ч. В действительности ресурс обмотки определяется не только термодеструкцией, но и другими факторами (коммутационным перенапряжением, механическими усилиями, влажностью и др.), поэтому он увеличивается не так значительно, но при этом не менее, чем в 2 раза.

Руководствуясь этими соображениями, европейские фирмы-производители стандартных асинхронных двигателей придерживаются правила применения систем изоляции класса нагревостойкости F (qб = 100°С) при превышении температуры обмоток, соответствующем базовому для систем изоляции класса нагревостойкости В (qб = 80°С). Снижение температуры обмоток стандартных асинхронных двигателей способом охлаждения ICO141 МЭК 60034-6 позволяет в уменьшить диаметр вентилятора наружного обдува и существенно (до 5 дБ(А)) снизить уровень вентиляционного шума, который в двигателях с частотой вращения 3000 и 1500 мин-1 является определяющим.

УНИВЕРСАЛЬНОСТЬ

ПИТАНИЯ В настоящее время большинство стандартных асинхронных двигателей в России выпускают на напряжение сети 380 В при частоте 50 Гц. Вместе с тем МЭК предусматривает к 2003 г. переход на напряжение 400 В (публикация МЭК 60038). При этом необходимо будет обеспечивать длительную работу двигателя при отклонениях напряжения от номинального ±10 % (сейчас это ограничение установлено на уровне ±5 % - публикация МЭК 60031-1). Для обеспечения работы двигателя при пониженном на 10 % напряжении питания потребуются новые подходы при проектировании с целью создания соответствующих температурных запасов. Следует отметить, что и в этом случае для энергосберегающих двигателей с сервис-фактором 1,15 проблем не будет. Все европейские фирмы уже производят стандартные асинхронные двигатели на напряжение 400 В, российские заводы - пока только для поставок на экспорт. Одним из насущных требований европейского рынка является обеспечение возможности работы двигателя при напряжении 400 В и частоте 50 Гц от сети 480 В и 60 Гц при повышенной на 20 % номинальной мощности. Такую возможность также следует предусматривать при проектировании новых машин. ЭЛЕКТРОМАГНИТНАЯ

СОВМЕСТИМОСТЬ Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве. ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем. ВОЗМОЖНОСТЬ РАБОТЫ В СИСТЕМАХ РЕГУЛИРУЕМОГО

ЭЛЕКТРОПРИВОДА .

При работе от преобразователя частоты (ПЧ) в ряде случаев необходимо предусматривать защиту двигателя от перенапряжения (если это не предусмотрено в системе) путем усиления витковой и корпусной изоляции. Большинство выпускаемых и применяемых в настоящее время ПЧ, рассчитанных на среднюю мощность до 3000 кВт, по своей структуре являются инверторами. Выходное трехфазное напряжение в этих ПЧ формируется методом широтно-импульсной модуляции, что приводит к воздействию на изоляцию (витковую, межфазовую) электродвигателя напряжения импульсной формы, амплитуда которого значительно превышает амплитуду первой гармоники выходного напряжения. Это приводит к преждевременному старению изоляции и снижению срока службы обмотки и двигателя в целом. Увеличение срока службы асинхронного двигателя общепромышленного применения в составе регулируемого привода может и должно быть обеспечено схемотехническими решениями ПЧ или введением специальных фильтрующих устройств в цепь питания электродвигателя. Разработка ПЧ и регулируемого электродвигателя в едином конструктивном исполнении позволяет оптимизировать систему электропривода не только по массогабаритным показателям и удобству обслуживания, но и с позиций единой системы независимого теплоотвода решить вопрос охлаждения машины на малых частотах вращения. При регулировании частоты вращения, превышающей синхронную, следует применять подшипники соответствующей быстроходности. В связи с этим в публикации МЭК 60034-1 предусмотрено значительное увеличение предельных скоростей, допускаемых для стандартных асинхронных двигателей.

Новые серии асинхронных электродвигателей.

Их характеристики.

К новым сериям выпускаемых асинхронных электродвигателей с короткозамкнутым ротором можно, без сомнений, отнести двигатели семейства 5А и 6А.Эти типы двигателей начали выпускать с конца 90-х годов на российских машиностроительных заводах – Владимирский моторный завод и Ярославский машиностроительный завод ОАО Eldin.

двигатели серии А

Двигатели серии А - унифицированная серия асинхронных трехфазных закрытого обдуваемого исполнения с короткозамкнутым ротором двигателей. Двигатели серии А охватывают диапазон мощностей от 0,06 до 100 кВт, диапазон высоты оси вращения от 50 до 250 мм, частоты вращения 3000, 1500, 1000, 750.

Структура серии предусматривает следующие группы исполнений :

    Модификации по условиям окружающей среды (тропическое, химически стойкое, для сельского хозяйства)

    По точности установочных размеров (высокой точности и повышенной точности),

    С дополнительными устройствами (с фазным ротором, со встроенным электромагнитным тормозом)

    С повышенным пусковым моментом

    С повышенным скольжением

    Многоскоростные

    Узкоспециальные (для судовых механизмов, для привода моноблочных насосов, рудничное исполнение, для привода бессальниковых компрессоров и др.)

Двигатели основного исполнения предназначены для работы от сети переменного тока частоты 50 Гц и изготавливаются на номинальные напряжения, указанные в таблице:

Структура условного обозначения

АИХХХХХХХХХХХ

А - асинхронный; И - унифицированная серия (И - Интерэлектро); Х - привязка мощностей к установочным размерам (Р по ГОСТ, С - по CENELEK); Х - Р - с повышенным пусковым моментом, С - с повышенным скольжением; ХХХ - габарит, мм; Х - установочный размер по длине станины (S, M, L); Х - длина сердечника статора (А или В, отсутствие буквы означает только одну длину сердечника статора - первую); Х - число полюсов: 2, 4, 6, 8; Х - дополнительные буквы для модификаций двигателя (Б - со встроенной температурной защитой; П - с повышенной точностью по установочным размерам; Х2 - химически стойкие; С - сельскохозяйственные); ХХ - климатическое исполнение (У, Т, ХЛ) и категория размещения (1, 2, 3, 4, 5).

Двигатели асинхронные трехфазные закрытого обдуваемого исполнения с короткозамкнутым ротором серии 5А привязаны по мощности к установочным размерам по ГOCT 28330-89.

Электродвигатели серии АИР полностью взаимозаменяемы с соответствующими типами электродвигателей серий 5А Двигатели предназначены для работы в режимах S1-S6 ГОСТ 183-74 (номинальная мощность указана для длительного режима S1) от сети переменного тока 50Гц, напряжением 220, 380, 660В.

Двигатели используются в различных отраслях промышленности и в сельском хозяйстве: для привода станков, насосов, компрессоров, вентиляторов, мельниц, кормоизмельчителей, транспортных механизмов и т.д.

Выпускаются с высотой вращения вала до 315 мм и с высотой вращения вала 90, 100 и 112 мм

Асинхронные двигатели общепромышленного назначения серий 5А основного исполнения и его модификаций соответствует требованиям стандартов, перечисленных в таблице:

НАИМЕНОВАНИЕ

СТАНДАРТ РФ

ПУБЛИКАЦИЯ МЭК

Машины электрические вращающиеся. Номинальные данные и рабочие характеристики

ГОСТ 28173

МЭК 34-1

Машины электрические асинхронные мощностью от 1 до 400 кВт. Двигатели. Общие технические требования

ГОСТ 28330

Машины электрические вращающиеся. Ряды номинальных мощностей, напряжений и частот

ГОСТ 12139

МЭК 38

Машины электрические вращающиеся. Установочно-присоединительные размеры

ГОСТ 18709

МЭК 72

Машины электрические вращающиеся. Классификация степеней защиты, обеспечиваемая оболочками вращающихся машин

ГОСТ 17494

МЭК 34-5

Машины электрические вращающиеся. Методы охлаждения. Обозначения

ГОСТ 20459

МЭК 34-6

Машины электрические вращающиеся. Условные обозначения конструктивных исполнений по способу монтажа

ГОСТ 2479

МЭК 34-7

Машины электрические вращающиеся. Обозначения выводов и направления вращения

ГОСТ 26772

МЭК 34-8

Машины электрические вращающиеся. Допустимые уровни шума

ГОСТ 16372

МЭК 34-9

Машины электрические вращающиеся. Встроенная температурная защита

ГОСТ 27895

МЭК 34-11

Машины электрические вращающиеся. Пусковые характеристики односкоростных трехфазных асинхронных двигателей с короткозамкнутным ротором напряжением до 660В

ГОСТ 28327

МЭК 34-12

Машины электрические вращающиеся. Допустимые вибрации

ГОСТ 20815

МЭК 34-14

Система изоляции. Оценка нагревостойкости и классификация

ГОСТ 8865

МЭК 85

Новые серии электродвигателей асинхронных типа 5A3MB имеют взрывонепроницаемое исполнение. Такие двигатели предназначены для стационарных насосов, компрессоров и других быстроходных механизмов во взрывоопасных зонах, в которых возможно образование взрывоопасных смесей газов, паров с воздухом 1, 2, 3 категории и групп Т1, Т2 ТЗ, Т4 или смесей пыли с воздухом, температура тления или воспламенения которых выше 185 о С.

Электродвигатели асинхронные трехфазные с короткозамкнутым ро- тором серии АТК (аналог АИР) с высотой оси вращения 80,90,100,112 мм

Тип электро- двигателя

Номинальная мощность, кВт

Тип электро- двигателя

Номинальная мощность, кВт

Ном. частота вращения, мин.-1

Крупные асинхронные электродвигатели взрывозащищенного исполнения.

Номенклатура крупных асинхронных взрывозащищенных электродвигателей постоянно обновляется и расширяется, новые серии двигателей отличают более высокие технические характеристики и целый ряд конструктивных решений, направленных на повышение надежности и удобства эксплуатации.

Взамен двигателей ВАО2-450, ВАО2-560 и ВАО2-630 в настоящее время освоено промышленное производство новых серий –ВАО3-710,ВАО3-800, ВАО4-450, ВАО4-560 и ВАО4-630. Отрезки серии ВАО4-450 и ВАО4-560 дополнены исполнениями двигателей с частотой вращения 3000 об/мин.

Электродвигатели серии ВАО4 полностью взаимозаменяемы по установочно-присоединительным размерам с двигателями серии ВАО2. В конструкции электродвигателей серии ВАО4 применены как зарекомендовавшие себя традиционные, так и новые конструктивные решения, дающие ряд преимуществ относительно других производителей аналогичной продукции:

    литая алюминиевая короткозамкнутая обмотка ротора, позволяющая обеспечить оптимальные форму и размеры паза и, как следствие, увеличенный пусковой момент электродвигателей при относительно небольших величинах кратности пусковых токов;

    технология вакуум-нагнетательной пропитки (HPI) обмоток эпоксидным компаундом, являющимся основой изоляции "Монолит-2", высокая надежность которой признана во всем мире;

    изоляционные материалы класса нагревостойкости F, включая изоленты новейших разработок типа "Элмикапор" производства АО ХК "ЭЛИНАР" (Россия), а также ведущих мировых производителей: Von Roll Isola (Швейцария) и Isovolta (Австрия);

    подшипники повышенной надежности производства фирмы SKF (Швеция) в стандартном варианте для двигателей с частотой вращения ротора 3000 об/мин и для любых других типоразмеров серии по заказу потребителя;

    динамическая балансировка ротора и наружного вентилятора, обеспечивающая пониженные значения уровней вибрации, шума и увеличение срока эксплуатации;

    оребренная конструкция корпуса статора повышенной механической жесткости, с обработкой мест посадки пакета статора и подшипниковых щитов с одной установки на специальных расточных станках;

    новая конструкция системы вентиляции. Внутренний вентилятор новой конструкции установлен за зоной расположения лобовых частей обмотки, что значительно повышает надежность;

    конструкция коробки выводов с использованием цельной изоляционной панели;

    устройства контроля температуры подшипников нового типа с возможностью дистанционной передачи сигналов аварийного предупреждения и управления отключением электродвигателя в аварийных режимах;

    пазовые клинья из специального магнитного материала, а также лакировка листов пакета статора, обеспечивающие снижение потерь и увеличение энергетических параметров.

Режим работы двигателя продолжительный S1 от сети переменного частотой 50Гц.

Исполнение по взрывозащите:

1ExdIIBT4(ExdIIBT4).

Вид климатического исполнения:

Конструктивное исполнение по способу монтажа:

Степень защиты:

корпуса и коробки выводов - IP 54; кожуха наружного вентилятора - IP 20.

Способ охлаждения: ICA 0151.

Структура условного обозначения:

Типоразмер

Напря- жение, В

Мощ- ность, кВт

Частота вращения (синхр.), об/мин

КПД, %

Масса, кг

ВАОВ3-710 M4

ВАОВ3-710 L4

ВАОВ3-800 M4

ВАОВ3-800 L4

ВАОВ3-710 LA6

ВАОВ3-710 LB6

ВАОВ3-800 LA6

ВАОВ3-800 LB6

Транскрипт

1 МЕТОДЫ ОЦЕНКИ СРОКА СЛУЖБЫ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Закладной А.Н., к.т.н., доцент; Закладной О.А., аспирант Национальный технический университет Украины «КПИ» Асинхронные двигатели, как правило, рассчитаны на срок службы 15-0 лет без капитального ремонта при условии правильной их эксплуатации. Под правильной эксплуатацией понимается работа в соответствии с инальными параметрами, указанными в паспорте АД. В реальной жизни имеет место значительное отклонение от инальных режимов эксплуатации. В настоящее время более 70% эксплуатируемого парка асинхронных двигателей составляют машины, побывавшие в капиталь ремонте хотя бы один раз . В подавляющем большинстве случаев (85-95%) отказы АД мощностью свыше 5 квт связаны с повреждением изоляции обмоток и распределяются следующим образом: межвитковые замыкания 93%, пробой межвитковой изоляции %. Остальные отказы в работе вызваны механическими повреждениями . Таким образом, срок службы асинхронного электродвигателя определяется, в основ, качеством изоляции обмоток. Надежность электрической машины свойство машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортировки. Надежность является комплексным свойством, которое в зависимости от назначения машины и условий ее эксплуатации может включать в себя безотказность, долговечность и сохраняемость. Срок службы показатель долговечности, а его прогнозирование сводится к расчету надежности электрической машины . В настоящее время надежность двигателей электроприводов во всех областях промышленности очень низкая. Ежегодно выходят из строя и ремонтируются до 30% парка электрических машин. Подавляющее большинство их после ремонта возвращается на предприятие и эксплуатируется до следующего выхода из строя. Машина может ремонтироваться 3-4 раза, а время наработки на отказ составляет 0,5... 1,5 года. Исследованы механизмы влияния факторов на эксплуатационную надежность и срок службы асинхронных двигателей. Основными из них являются следующие: качество активных и конструкционных материалов, используемых при изготовлении электрических машин; качество изготовления электрических машин; качество электроэнергии; несоответствие условий применения машин их исполнению, пусковым и рабочим характеристикам; отсутствие надлежащего обслуживания машин и низкое качество их ремонта.

2 Наиболее часто егрев обмоток АД возникает при заторможен роторе (заклинивании), обрыве фазы статора, отклонении напряжения сети от нормируемых значений, несимметрии питающего напряжения . В тех случаях, когда двигатель работает при неизменной тематуре изоляции, оценить скорость процесса старения изоляции или срок службы машины сравнительно несложно. Известны зависимости, связывающие срок службы изоляции данного класса с определенным постоянным уровнем тематуры в течение срока службы. Первые работы в этом направлении имели, главным образом, опытный характер и относились к изоляции класса А. В результате исследований было сформулировано правило «восьми градусов» (правило Монтзигера). В соответствии с этим правилом повышение тематуры на каждые 8 С сверх предельно допустимой сокращает срок службы вдвое . R = R = Δ b R e, (1) где R - срок службы при увеличенной тематуре; R x - срок службы при тематуре (определяется в зависимости от класса изоляции, например, 7 лет при =105 С); Δ - постоянное приращение тематуры (для применяемых классов изоляции находится в диапазоне 8-10 К), b коэффициент, определяемый классом изоляции. Значения Δ не могут быть названы точно, если недостаточен объем эксиментальных данных. Для изоляционных материалов класса А обычно принимают Δ=8 K. Термоактивная изоляция (класса В) повысила это значение до Δ=10 К. Логарифмический характер зависимости (1) диктует жесткие правила эксплуатации электрических машин. Согласно именно пиковые тематуры определяют практический срок службы машины. С этой точки зрения качество конструкции тем выше, чем меньше отношение пиковой тематуры к средней. Формула (1) является приближенной, но она позволяет верно произвести оценку конструкций электрических машин и режимов их эксплуатации, особенно при экоических расчетах. Более строгий подход к исследованию явления старения изоляции под влиянием тематуры связан с применением общих законов кинетики химических реакций. Существует следующая зависимость скорости протекания химических реакций от тематуры: B ln K = + A, () где абсолютная тематура (градусы Кельвина), K - постоянная скорости реакции. Коэффициенты А и В в уравнении () имеют определенный физический смысл и связаны с постоянными, характеризующими состав и структуру вещества, участвующего в реакции. B ln = G, (3)

3 где B = Ea R и G постоянные, характеризующие состав и структуру вещества , Ea - избыточное по сравнению со средней величиной количество энергии (энергия активации), которым должна обладать молекула вещества, чтобы оказаться способной к химическому взаимодействию; R =8,3 Дж/град моль универсальная газовая постоянная. На основании этого, зная срок службы изоляции R 1 при тематуре 1, можно определить ее срок службы R при тематуре из следующего уравнения: 1 1 R = R1 exp B (4) 1 Эксиментальное значение В для класса изоляции А согласно составляет 0, К, для класса В 1, К. Поскольку такой расчет учитывает лишь тепловое старение, а во время работы машины изоляция испытывает еще электрические и механические воздействия, то можно предположить, что в действительности ее разрушение вследствие пробоя произойдет значительно раньше. Представляет интерес определение влияния кратковременных егрузок на износ изоляции и сокращение срока ее службы. Согласно последним исследованиям, длительная работа двигателя с токовой егрузкой всего на 5% от инального сокращает срок его службы в 10 раз . Износ изоляции в единицу времени при постоянной тематуре, С, 1 1 b ξ = = e, (5) R R где Т продолжительность службы изоляции, С, b определенные коэффициенты. Размерность ξ - время -1, и при изменяющейся в течение времени тематуре ξ = 1 e b d R 0 Поскольку значительный интерес представляет относительное уменьшение срока службы изоляции, будем в дальнейшем характеризовать износ не величиной ξ, а безразмерной величиной ξ C = z. Пренебрегая теплоотдачей при кратковременных егрузках, находим износ за время нагрева 1 током I = ki согласно (6) (e 1) b e z нагр =, (7) где - тематура обмотки, обусловленная инальными потерями, выделяющимися в самой обмотке при иналь токе в ней, Δ - превышение тематуры обмоток над тематурой, - время егрузки. При работе до егрузки с инальным режимом превышение тематуры обмоток при егрузке может быть определено как

4 Δ = Δм (k. 1), (8) где Δ м. - составляющая превышения обмотки статора, определяемая потерями в обмотках статора, k кратность тока в обмотке по отношению к инальу, Т постоянная времени нагрева двигателя. Так как тематура обмоток двигателя после окончания егрузки не может сразу уменьшиться до установившегося значения, дополнительный износ изоляции происходит еще и во время охлаждения. Будем считать, что после окончания егрузки режим возвращается к исходу (инальу). В расчете принимается постоянная времени при охлаждении такая же, как и при нагревании, поскольку предполагается, что двигатель после егрузки продолжает работать с той же скоростью вращения, что и до егрузки. Незначительное или кратковременное снижение скорости за время егрузки оказывает незначительное влияние на постоянную времени нагрева. Отношение износов изоляции при охлаждении и при нагреве зависит от величины егрузки и значения постоянной времени при нагреве обмотки, причем при значениях Т > 300 с износ происходит практически только за время охлаждения . Износ изоляции за время охлаждения согласно b e = z охл e e (9) Суммарный износ за время одного цикла нагрева и охлаждения равен сумме частичных износов z = z нагр + z охл, b e Δ b = + + z 4e e 1 5, (10) Заменяя Δ из уравнения (8), получаем b. (k 1). (k 1) м м e z = 4e + e (1 +) 5. (11) м. (k 1) Из этого уравнения следует, что износ изоляции имеет при некотором значении постоянной времени нагрева минимальную величину. Отметим, что при значениях 300 с даже при небольших и относительно длительных егрузках износ происходит только за время охлаждения. Существенное влияние на срок службы АД оказывает качество питающего напряжения, регламентированное ГОСТ При несимметрии напряжений % срок службы АД сокращается на 10,8%. При несимметрии напряжений 4%, так же как и при уменьшении напряжения на 10% срок службы АД сокращается вдвое. Сопротивление обратной последовательности индукционных машин в 5-8 раз меньше сопротивления прямой. Т.о., двигатели обладают фильтрующими свойствами по отношению к токам обратной последовательности, поэтому даже незначительная несимметрия напряжений (1%) создает значительную несимметрию токов (7% - 9%) в обмотках.

5 Токи обратной последовательности вызывают дополнительный нагрев, что приводит к существену снижению срока службы АД. В приведена формула для расчета тематуры обмоток АД в функции несиметрии напряжения ε u: [ + (ε %) ] = (1) 1 u где тематура обмоток при симметрич напряжении сети, εu - коэффициент несимметрии напряжений равный отношению напряжения обратной последовательности к инальу. Из этого выражения следует, что при ε u = 3,5% тематура обмоток двигателя повышается на 5%. Если АД длительное время работает при понижен напряжении, то из-за ускоренного износа срок службы его уменьшается. Приближенно срок службы изоляции Т можно определить по формуле: R R =, (13) K где R - срок службы изоляции двигателя при инальных напряжении и нагрузке, K - коэффициент, зависящий от значения и знака отклонения напряжения, а также от коэффициента загрузки двигателя: K (47 7,55 1) = δ δ + k, при -0,< з δ <0 (14) k з K =, при 0, δ >0, где δ - отклонение напряжения, kз - коэффициент загрузки АД. Поэтому с точки зрения нагрева АД более опасны в рассматриваемых пределах отрицательные отклонения напряжения. Несинусоидальность напряжений приводит к увеличению активного сопротивления токам высших гармоник, что вызывает а АД значительные потери активной мощности, повышенный егрев и, как следствие, - сокращение срока службы. В выводится упрощенная формула для определения егрева обмоток вследствие несинусоидальности и несимметрии питающего напряжения: Δ = 80 ε + ν 1,55 1,39 (15) u b ν= ν ν где - отношение напряжения ν-й гармоники к инальу напряжению, ν ν ер гармоники, Δ =. Запишем относительное значение продолжительности жизни изоляции АД в виде z = exp() и, подставляя в него формулу (15), получим: = ε + ν z exp 80 1,55 1,39. (16) u ν= ν ν В предложена формула для расчета установившейся тематуры обмотки, учитывающая потери в электродвигателе и изменение параметров материала проводника:

6 a + k Δ = Δ, (17) 1+ a αδ(k 1) ΔРс. н. где a = - коэффициент инальных потерь в электродвигателе, ΔРм. н. α=0,0043 1/ С тематурный коэффициент сопротивления меди, I k = - кратность рабочего тока по отношению к инальу. Здесь под I инальным понимается ток, вызывающий инальный нагрев обмотки АД. В этом случае процесс нагрева описывается выражением: I a + I Δ = Δ e 1 + Δначe, (18) I а 1+ αδ I 1 где Δ нач - начальное превышение тематуры. Далее рассчитывается срок службы по формуле (1). На рис. 1 представлены эксиментальная кривая (1) изменения ресурса электродвигателя и различные оценочные кривые (, 3, 4). Точное построение реальной кривой невозможно, но ее можно заменить прямой, построенной по двум полученным эксиментально точкам: вая - начальный ресурс изоляции (определен, например, эксиментальным методом), вторая - пробой изоляции. Кривая построена с учетом фактора егрузок по току с использованием формулы (11). Кривая 3 построена с использованием формул (1), (18), в которых отражено влияние таких факторов, как тематура обмоток и коэффициент загрузки АД в течение срока службы. Кривая 4 построена с учетом дополнительно фактора качества питающего напряжения. Рис.1

7 Таким образом, из всех вариантов расчета наиболее достоверным является расчет с учетом факторов питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Вывод. Одной из главных составляющих энергетической эффективности АД является наиболее длительный срок службы. В работе рассмотрены три метода оценки срока службы АД. Первый учитывает фактор егрузки, второй - тематуру обмотки, третий - качество питающего напряжения. Предложенный метод реализует комплексный подход с учетом основных влияющих факторов - питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Метод обеспечивает наибольшую точность определения срока службы АД. Литература 1.Бешта А.С., Желдак Т.А. Определение потерь в стали асинхронного двигателя по методике холостого хода // Сб. Статей «Проблемы создания новых машин и технологий», в.1. Кременчуг, Слоним Н.М. Испытания асинхронных двигателей. М., Энергия, Котеленец Н.Ф., Кузнецов Н.Л. Испытания и надежность электрических машин. М., Высшая школа, Воробьев В.Е., Кучер В.Я., Прогнозирование срока службы электрических машин: Письменные лекции. СПб.: СЗТУ, с. 5. Ковалев А.П., Шевченко О.А., Якимшина В.В., Пинчук О.Г. Оценка пожарной опасности электродвигателей, эксплуатирующихся на промышленных предприятиях Украины / Вісник Кременчугського держ. політехн. Університета, 004, вип /004 (5). 64 с. 6. Филиппов И.Ф. Теплообмен в электрических машинах. Л.: Энергоатомиздат, Данилов И. А., Иванов П. М. Общая электротехника с основами электроники. Москва: Высшая школа, Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей/ Под ред. Л.Г. Мамиконянца 4-е изд., ераб и доп. М.: Энергоатомиздат, с., ил. 9. Повышение качества энергии в электрических сетях / Шидловский А.К., Кузнецов В.Г. Киев: Наук. думка, с. 10. Овчаров В.В. Эксплуатационные режимы работы и непрерывная диагностика электрических машин в сельскохозяйствен производстве. / Киев: Изд-во УСХА, с.


УДК: 621.31 Ю.Г. Качан, д-р техн. наук, А.В. Николенко, канд. техн. наук, В.В. Кузнецов (Украина, Днепропетровск, Национальная металлургическая академия Украины) О ВЛИЯНИИ ГАРМОНИЧЕСКОГО СОСТАВА ПИТАЮЩЕГО

А.Н. Бурковский, О.А. Федюк, О.А. Рыбалко, Л.К. Шихова, Л.Д. Ильюшенкова ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ДОПУСТИМОЙ МОЩНОСТИ ЗАКРЫТОГО АСИНХРОННОГО ДВИГАТЕЛЯ В КРАТКОВРЕМЕННОМ РЕЖИМЕ ПРИ ПЕРЕМЕННОЙ НАГРУЗКЕ

АНАЛИЗ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ ПОНИЖЕННОЙ ЧАСТОТЕ ПИТАЮЩЕЙ СЕТИ УДК 621.313 С.П. Голиков Рассмотрена оптимизация работы автономных дизель-генераторных установок с целью экономии топлива и связанное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВО "СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ" А-ЗРДжендубаев МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО ЭЛЕКТРОПРИВОДУ Для студентов

Тема 0. Основы электропривода Вопросы темы. Электропривод: определение, состав, классификация.. Номинальные параметры электрических машин. 3. Режимы работы электродвигателей. 4. Выбор типа и мощности электродвигателя..

***** ИЗВЕСТИЯ ***** (6), 0 АГРОПРОМЫШЛЕННАЯ ИНЖЕНЕРИЯ УДК 6.34.:6.36.95.4 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ХАРАКТЕРИСТИКИ НАГРЕВА ЭЛЕКТРОДВИГАТЕЛЕЙ И ТЕПЛОВЫХ РЕЛЕ С.В. Волобуев, старший преподаватель И.Я.

Рабочие режимы ТГ и ГГ Под рабочими режимами работы генератора подразумевают такие режимы, в которых он может работать длительное время. К ним относятся режимы работы машин с различными нагрузками от минимально

Http://www.jurnal.org/articles/8/elect7.htm Page of 5 3.6. Анализ влияния высших гармонических составляющих на безотказность электроизоляционных покрытий Шпиганович Александр Николаевич доктор технических

УДК 629.423.31 Мальцев А.В. Повышение надежности изоляционных конструкций тяговых двигателей электровозов/а.в. Мальцев//Проблемы трансферта современных технологий в экономику Забайкалья и железнодорожный

УДК 621.313.333.018.782.3 Е.А. Вареник, М.М. Федоров, В.Е. Михайлов ТЕПЛОВЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕМЕНТАХ КОНСТРУКЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕПОДВИЖНОМ РОТОРЕ Постановка проблемы. В различных режимах

УДК 621.317.785.088.001.5 Майер B. Я. ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕСИНУСОИДАЛЬНЫХ ОТКЛОНЕНИЙ НАПРЯЖЕНИЯ НА ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ Согласно ГОСТ 13109-87 отклонение напряжений

УДК 62.33.333 Бурковский А.Н. Рыбалко О.А. Кустовая Е.Ю. Мельник А.А. Ильюшенкова Л.Д. Особенности теплового расчета закрытых обдуваемых асинхронных двигателей в режимах S5 S7. Основные положения методики

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ МЕЖВИТКОВЫХ КОРОТКИХ ЗАМЫКАНИЙ И НЕСИММЕТРИИ НАПРЯЖЕНИЯ В АСИНХРОННЫХ ЭЛЕКТРИЧЕСКИХ МАШИНАХ Реферат переходная модель для асинхронных электрических машин со статорной обмоткой, которая

УДК 621. 313. 323 Проектирование тяговых частотно-регулируемых двигателей В.Я. Беспалов 1, А.Б. Красовский 2, М.В. Панихин 2, В.Г. Фисенко 1 1 НИУ МЭИ, Москва 111250, Россия 2 МГТУ им. Н.Э. Баумана, Москва

Выбор сечения кабеля и провода Сечение проводов и кабелей определяют, исходя из допустимого нагрева с учетом нормального и аварийного режимов, а также неравномерного распределения токов между отдельными

ОЦЕНКА ПАРАМЕТРОВ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ОТКАЗОВ ОБМОТОК СТАТОРОВ ПРИ ЭКСПЛУАТАЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ С.А. Смолярчук, А.Л. Федянин Томский политехнический университет Введение

УДК 61.311 СНИЖЕНИЕ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ А.С. Енин., К.Б. Корнеев, Т.И. Узикова Новая редакция Федерального закона 61-ФЗ от 3 ноября 009 года «Об энергосбережении и о повышении

В гл. 8 был оценен экономический ущерб от повышенного потребления реактивной мощности асинхронными двигателями (АД), составляющие которого приведены на рис. 5. Чтобы получить более полное представление

Выбор сечения проводов и кабелей Общее положение по расчету электрической сети. Конечной целью расчета электрической сети жилого дома, как и всякого другого здания, является выбор сечений проводов и аппаратов

Вариант 1. 1. Назначение, классификация и устройство трансформатора. 2. Абсолютная и относительная погрешности измерения. Класс точности измерительного прибора. 3. При увеличении частоты вращения генератора

ЗАДАНИЕ Для электромеханической системы электропривода, трехфазного асинхронного двигателя с короткозамкнутым ротором и механической передачи:. Рассчитать и построить механическую характеристику двигателя

200 УДК 621.313 К. В. ХАЦЕВСКИЙ Ю. Н. ДЕМЕНТЬЕВ А. Д. УМУРЗАКОВА Омский государственный технический университет Томский политехнический университет МОДЕЛЬ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ

Введение Домашнее контрольное задание Технические данные асинхронных двигателей 4 Методика расчетов значений параметров и характеристик асинхронных двигателей по каталожным данным Расчет активных и индуктивных

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2009. 4(58). 65 70 УДК 62.3 ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ СИЛОВЫХ ТРАНСФОРМАТОРОВ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ 6 35 кв НЕФТЕПРОМЫСЛОВ В.М. ЛЕВИН, Д.В. КУЗЬМИНА Дана оценка состояния

Глава 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ И РЕГУЛИРОВОЧНЫЕ СВОЙСТВА ЭЛЕКТРОПРИВОДОВ ПОСТОЯННОГО ТОКА 2.1. Механические характеристики электродвигателей и рабочих механизмов Механической характеристикой электродвигателя

Реферат Выпускная квалификационная работа 114 стр., 18 рисунков, 15 таблиц, 17 источников, 7 л. графического материала. Ключевые слова: асинхронный, ротор, пусковая характеристика, рабочая характеристика.

УДК 621.313.181 В.В. НАНИЙ, канд. техн. наук, доц., НТУ "ХПИ", Харьков А.Г. МИРОШНИЧЕНКО, канд. техн. наук, доц., НТУ "ХПИ", Харьков В.Д. ЮХИМЧУК, канд. техн. наук, проф., НТУ "ХПИ", Харьков А.А. ДУНЕВ,

Тема 3. Статическая устойчивость генераторов возобновляемых источников энергии (2 часа) Основные понятия и определения статической устойчивости Деление режимов электрической системы на установившиеся и

Институт электротехники Направление подготовки Магистерская программа 13.4.2 Электроэнергетика и электротехника Электропривод и автоматика Банк заданий по профильной части вступительного испытания в магистратуру

УДК 621.31 МЕТОДИКА ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОПРОВОДКИ ЗДАНИЙ Никольский О.К. Гончаренко Г.А. Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия Большинство

11 ИНТЕГРАЛЬНЫЕ ПОКАЗАТЕЛИ ПЕРЕХОДНЫХ ПРОЦЕССОВ 11.1 Общие положения После расчета нагрузочных диаграмм переходных процессов по любому из трех путей (по аналитическим выражениям, анализом ЛАЧХ, интегрированием

УДК 621.316.577 ФИЛЬТРОВАЯ ЗАЩИТА ПОТРЕБИТЕЛЬСКИХ ЭЛЕКТРОУСТАНОВОК Канд. техн. наук, доц. ПОЛУЯНОВ М. И., СЧАСТНАЯ Е. С. Белорусский национальный технический университет Одна из важнейших задач в области

Аннотация рабочей программы дисциплины направление подготовки: 23.05.05 Системы обеспечения движения поездов направленность: Телекоммуникационные системы и сети железнодорожного транспорта Дисциплина:

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НИЗКОТЕМПЕРАТУРНЫХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ

3. Копылов Ю.В. «Расчёт магнитной цепи постоянного тока». Учебное пособие. Томск. Изд. ТПИ, 1985 4. Буль Б. К. Основы теории и расчёта магнитных цепей. М.-Л., издательство Энергия, 1964 5. Чунихин А. А.

ПУСКОВЫЕ КОНДЕНСАТОРЫ CBB60. отечественный аналог К78-22, К78-25, К78-36, К78-43. Конденсаторы предназначены для запуска асинхронных электродвигателей и создания фазосдвигающей цепи после выхода на рабочий

Тема 3. Пуск трехфазных асинхронних двигателей с короткозамкнутым и фазным роторами. План 1. Пусковые свойства и пусковой ток асинхронных двигателей. 2. Пуск двигателей с фазным ротором: схема пуска, выбор

3 ЛАБОРАТОРНАЯ РАБОТА 1 ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА 1. Цель работы Изучение основных эксплуатационных особенностей генератора постоянного тока (ГПТ) в зависимости от способа его

ISSN 2219-7869. НАУЧНЫЙ ВЕСТНИК ДГМА. 1 (11Е), 2013. 164 ОСОБЕННОСТИ ТЕПЛОВОГО СОСТОЯНИЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕСИММЕТРИИ ПИТАЮЩЕГО НАПРЯЖЕНИЯ Федоров М. М., Ивченков Н. В., Ткаченко А. А. Выполнен

УДК 61.31 СОСТОЯНИЯ ИЗОЛЯЦИИ ОБМОТОК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ Г. В. Суханкин В статье рассматривается модель измерения диагностического показателя изоляции электрической машины, в частности, асинхронного

1 В самом начале работы пользователю необходимо зарегистрироваться. При регистрации пользователю присваивается определённая роль. Роль определяет возможности пользователя. Самая простая роль это «Потребитель»

УДК 6.33.333 АНАЛИТИЧЕСКИЙ СПОСОБ РАСЧЕТА ПУСКОВОГО РЕОСТАТА ДЛЯ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ С УЧЕТОМ НЕЛИНЕЙНОСТИ ЕГО МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК А.Ю. Соколов Пусковые свойства электродвигателя

Отчет 479/07-2014 Электродвигатель привода насоса P27220 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739

УДК 61.315 Галеева Р.У., ст. преподаватель Казанский Государственный Энергетический Университет Россия, г.казань Альмиева Д.С., магистр Казанский Государственный Энергетический Университет Россия, г.казань

ОЦЕНКА СОСТОЯНИЯ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКОГО КОМПЛЕКСА УКРАИНЫ Ю.А. Папаика, А.Г. Лысенко, Национальный горный университет, Украина Приведены

Тема 2.5 Электромагнитный момент асинхронного двигателя. План 1. Потери и коэффициент полезного действия асинхронного двигателя. 2. Электромагнитный момент асинхронного двигателя. 3. Влияние напряжения

УДК 621.313.333.018 О.Г. ПИНЧУК (канд.техн.наук) Донецкий национальный технический университет И.П. КУТКОВОЙ Донбасская государственная машиностроительная академия [email protected] ОЦЕНКА ТЕПЛОВОГО

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

4.2 Работа 9 Статические характеристики синхронного двигателя при питании от преобразователя частоты Цель работы Изучение режимов работы двигателя (двигательного, рекуперации), экспериментальное исследование

Контрольное задание Трехфазный асинхронный двигатель Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s относительная разность частоты вращения ротора двигателя

Измерительные трансформаторы тока и напряжения Основные стандарты на измерительные трансформаторы ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия»; ГОСТ 7746-2001 «Трансформаторы тока.

УДК 62-83 Зюзев А.М., Метельков В. П. ОЦЕНКА ТЕПЛОВОГО РЕСУРСА ЭЛЕКТРОДВИГАТЕЛЯ ШТАНГОВОЙ ГЛУБИННОЙ НАСОСНОЙ УСТАНОВКИ Уральский федеральный университет им. первого Президента России Б.Н.Ельцина В данном

Лекция 4. Основные количественные показатели надежности технических систем Цель: Рассмотреть основные количественные показатель надежности Время: 4 часа. Вопросы: 1. Показатели оценки свойств технических

ХАРАКТЕРИСТИКИ АСИНХРОННЫХ МАШИН С КОРОТКОЗАМКНУТЫМ РОТОРОМ В РЕЖИМАХ ДВИГАТЕЛЯ И ГЕНЕРАТОРА Галиновский А.М., к.т.н., доцент, Дубчак Е.М., ст. преподаватель, Могелюк С.О., студент КПИ им. Игоря Сикорского,

МЕХАНИЗМЫ СОБСТВЕННЫХ НУЖД ТЭС. ОБЩАЯ ХАРАКТЕРИСТИКА. САМОЗАПУСК ДВИГАТЕЛЕЙ С.Н. БЕЛОГЛАЗОВ АЛЕКСЕЙ ВЛАДИМИРОВИЧ, к.т.н., доцент кафедры электрических станций (ЭлСт), ФЭН, II- (кафедра) Лекции 9- Новосибирск,

44 УДК 681.54: 621.313 (045) УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ РЕЖИМАМИ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА С ПОВЫШЕННЫМ ПУСКОВЫМ МОМЕНТОМ Национальный авиационный университет Красношапка Н. Д., к.т.н. Рассмотрены вопросы

050202. Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Глава первая ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЭЛЕКТРООБОРУДОВАНИЯ 1.1. СИСТЕМЫ ЭКСПЛУАТАЦИОНИОГО КОНТРОЛЯ Основные понятия. Надежность оборудования определяется его конструкцией и качеством изготовления. Однако

Отчет 204/10-2013 Электродвигатель насоса 1 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739 e-mail: [email protected]

6. ТРАНСФОРМАТОРЫ Трансформатором называется статический электромагнитный аппарат, служащий для преобразования электрической энергии переменного тока с одними параметрами в электрическую энергию с другими

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ

Распределительные трансформаторы 6(10)кВ. Проблема качества электрической энергии в сетях 0,4 кв. Исследование несимметричной работы трансформаторов. Силовой трансформатор является одним из важнейших элементов

Math-Net.Ru Общероссийский математический портал В. Г. Гольдштейн, А. Ю. Хренников, Причины повреждения обмоток силовых трансформаторов и расчет токов короткого замыкания, Матем. моделирование и краев.

УДК 621.313.333.001. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНЫХ ПРОЦЕССОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙС РАЗЛИЧНЫМИ РОТОРАМИ Мартынов В.Н., Олейников А.М. Представлены результаты экспериментального исследования переходных

Новной модуль который будет базироваться на основе частотного преобразователя, и его компонентами будут служить самые разнообразные модули, начиная с того что возможно создать совершенно разные модули

ЭЛЕКТРОТЕХНИКА И ЭНЕРГЕТИКА УДК 61.3.018.3 ПОЛУЧЕНИЕ ЗАВИСИМОСТЕЙ СОПРОТИВЛЕНИЙ ИЗОЛЯЦИИ КАБЕЛЯ АВбБШв (4 70) ОТ ЧАСТОТЫ ПИТАЮЩЕГО НАПРЯЖЕНИЯ ПРИ СХЕМЕ ПОДКЛЮЧЕНИЯ «ФАЗА ОПЛЕТКА» И «ФАЗА ФАЗА» А. А. АЛФЕРОВ,

ГОСТ 12049-75 Двигатели постоянного тока для машин напольного безрельсового электрифицированного транспорта. Общие технические условия Дата введения 1977-01-01 * ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного

4. Школа для электрика - Использование сервоприводов при автоматизации оборудования, URL: http://electricalschool.info/main/drugoe/226- ispolzovanie-servoprivodov-pri.html (дата обращения 07.09.17). Научный

УДК 621.313.13 А.В. ТАРНЕЦКАЯ, аспирант (КузГТУ) И.Ю. СЕМЫКИНА, д.т.н., доцент (КузГТУ) г. Кемерово ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ ПУСКА СИНХРОННЫХ ДВИГАТЕЛЕЙ С ПОСТОЯННЫМИ МАГНИТАМИ Многие научно-практические

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ЧЕЛЯБИНСКАЯ ГОСУДАРСТВЕННАЯ АГРОИНЖЕНЕРНАЯ

Кацман электрические машины решебник >>> Кацман электрические машины решебник Кацман электрические машины решебник Режимы работы и устройство асинхронной машины 137. Трехобмоточные трансформаторы и автотрансформаторы

Направление подготовки 13.03.02 «Электроэнергетика и электротехника» Профиль подготовки «Электропривод и автоматика промышленных установок и технологических комплексов» Изменения и дополнения к РПД Б1.В.ДВ.7.1

УДК 621.311 ДИАГНОСТИКА И ПРОГНОЗИРОВАНИЕ ОСТАТОЧНОГО РЕСУРСА ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРОПРИВОДА НАСОСНО- КОМПРЕССОРНОГО ОБОРУДОВАНИЯ НЕФТЕХИМИЧЕСКИХ ПРОИЗВОДСТВ А.В. Самородов Филиал Государственного образовательного

«Вечный двигатель» или 10 советов, как продлить его срок службы

Искать ответ на вопрос как долго вам прослужит электродвигатель нужно не в ходе его эксплуатации, а намного раньше. Правильный выбор машины с учетом условий и регулярности ее применения — верный залог того, что она будет работать долго, надежно и эффективно. При этом, конечно, не стоит забывать о соблюдении рекомендаций по эксплуатации, грамотном монтаже и профессиональном обслуживании машины. Именно эти параметры будут определяющими в продолжительности ее жизни.

Теперь рассмотрим каждый из них подробнее и дадим еще несколько советов, на что стоит обратить внимание при эксплуатации электродвигателя, чтобы срок его службы был максимально долгим.

1. Покупайте правильный электродвигатель

Чтобы не приобрести очередную «головную боль» (в виде электродвигателя) на свой объект, посоветуйтесь со своими механиками. Именно эти люди будут сутки напролет обхаживать и заботиться о двигателях, чтобы машина не подвела в самый неподходящий момент. Они профессионалы и подберут то, что необходимо, а не то, что дешево или выгодно. Они умеют правильно, и главное — технически грамотно:

  • определить производителя и серию двигателя;
  • указать необходимую мощность и обороты;
  • уточнить вопрос по рабочему напряжению, способу монтажа, климатическому исполнению;
  • обратить внимание на значения КПД и cos φ;
  • указать дополнительные требования к машине.

В том случае, если вы живете по правилу — доверяй, но поверяй — можете совершенно бесплатно получить необходимые рекомендации у наших специалистов.

2. Установите прямую связь со специалистами завода-изготовителя

Это позволит вам напрямую с разработчиками электродвигателя технически грамотно и быстро решать все вопросы, связанные с обслуживанием и ремонтом. Предоставляя обратную связь производителю, вы, хотите того сами или нет, делаете неоценимый вклад в повышения уровня качества производимой производителями продукции.

3. Соблюдайте технику безопасности при проведении монтажных работ и советы по эксплуатации

Установка электродвигателя производится, как правило, с помощью кранов или ручных лебедок, а также талей и других устройств, расположенных над местом его эксплуатации. Обязательно проверяйте возможности их нагрузки!

Также не забывайте, что центровка электродвигателей с технологической машиной, проверка воздушных зазоров, замена смазки в подшипниках, подгонка и регулировка щеток у электродвигателя с фазным ротором, проверка сопротивления изоляции обмоток должны происходить только при отключенном рубильнике, вынутых плавких вставках предохранителей на питающей линии с вывешиванием запрещающего плаката на рубильнике.

При монтаже необходимо обратить особое внимание на состояние электродвигателя и не допускать использования инструмента, имеющего дефекты.

4. Своевременно выполняйте регламентные работы

В первую очередь, проводите регулярный внешний осмотр во время работы двигателя. Эта мера носит профилактический характер, но очень важна. Она позволит предупредить возникновение неисправностей и, как следствие, предотвратить сбой в работе. Во время проведения осмотра очищается поверхность электродвигателя, производится затяжка болтовых соединений и крепления заземлений.

Не менее важно проведение работ по контролю основных параметров электрической машины. Сюда входят замер токов и проверка их на соответствие заводским параметрам. Перегрузка двигателя значительно сокращает срок его службы. Также необходимо убедиться в отсутствии посторонних шумов и вибрации, в том, что двигатель смазан, а его температура не превышает допустимые нормы (подробнее п. 7, 10).

5. Выбирайте энергоэффективные двигатели

Основным показателем энергоэффективности электродвигателя является его коэффициент полезного действия (далее КПД), который рассчитывается по формуле:

η=P2/P1=1 – ΔP/P1,

где Р2 — полезная мощность на валу электродвигателя,

Р1 — активная мощность, потребляемая электродвигателем из сети,

ΔP — суммарные потери, возникающие в электродвигателе.

Как мы видим, чем выше КПД (и соответственно ниже потери), тем меньше энергии потребляет электродвигатель из сети для создания полезной мощности.

Согласно эмпирическому закону срок службы изоляции уменьшается в два раза при увеличении температуры на 100 °C. Таким образом, срок службы двигателя с повышенной энергоэффективностью несколько больше, так как потери и нагрев меньше.

6. Применяйте электродвигатели с преобразователями частоты

Преобразователи частоты позволяют регулировать скорость вращения электродвигателя за счет изменения входной частоты. Это позволяет сэкономить как минимум 30% электроэнергии по сравнению с традиционными способами управления двигателями. Например, если снизить рабочую частоту всего на 20% (с 50 до 40 Гц), то потребление электроэнергии уменьшится вдвое!

Помимо энергосбережения преобразователи частоты увеличивают срок службы электродвигателя, повышают надежность всей системы, не требуют технического обслуживания.

7. Контролируйте температуру двигателя

Нормативный срок службы электродвигателя определяется допустимой температурой нагрева его изоляции. В современных двигателях применяется несколько классов изоляции, допустимая температура нагрева которых составляет:

  • Класс В — 130 °C,
  • Класс F — 155 °C,
  • Класс H — 180 °C.

Превышение допустимой температуры ведет к преждевременному разрушению изоляции и существенному сокращению срока его службы.

8. Следите за обмоткой электродвигателя

Здесь есть два варианта развития событий:

  • обрыв обмотки в треугольнике,
  • обрыв обмотки в звезде.

Рассмотрим каждый из них.

Обрыв обмотки в «треугольнике». Из практики известно, что оборванная обмотка никак не мешает нормальной работе электродвигателя. Оставшиеся две обмотки берут на себя всю мощность через подсоединение к сети по топологии «открытый треугольник». В результате двигатель набирает обороты, держит нагрузку, но происходит чрезмерный нагрев двух подключенных фаз. При относительно долгой эксплуатации асинхронного силового агрегата под нагрузкой на валу в таком неверном режиме включения происходит неминуемое выгорание задействованных обмоток статора.

Обрыв обмотки в «звезде». Обрыв обмотки статора в трехфазном электродвигателе, включенном в сеть по топологии «звезда», приводит к тому, что машина отказывается запускаться, если ее остановить. Двигатель греется, издает неприятный гул, вибрирует ротором, но не запускается. Обрыв обмотки приводит к тому, что не образуется вращающееся магнитное поле. Безусловно, двигатель можно запустить, но для этого необходимо предварительно раскрутить вал ротора. Естественно, возрастает электропотребление, шум, а также общий износ двигателя.

Единственно верное решение проблемы обрыва обмотки — это нахождение дефектной обмотки и ее перемотка. Любая скрутка, спайка внутри обмотки неприемлема. Лучше и надежнее перемотать всю обмотку, сохраняя число витков, а также сечение обмоточной проволоки.

9. Особое внимание — аварийный режим!

Многолетний опыт эксплуатации электродвигателей показал, что большинство существующих защит не обеспечивают безаварийную работу электродвигателя. Например, тепловые реле рассчитывают на длительную перегрузку 25-30% от номинальной. Но чаще всего они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает, электродвигатель продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток.

Правильный выбор защитного устройства — это важный фактор в обеспечении безопасной эксплуатации электродвигателя. Приборы защиты электродвигателя от аварийных режимов можно разделить на несколько видов:

  • тепловые защитные устройства — тепловые реле, расцепители;
  • защитные устройства от сверхтоков — плавкие предохранители, автоматы;
  • термочувствительные защитные устройства — термисторы, термостаты;
  • защита от аварий в электросети — реле напряжения и контроля фаз, мониторы сети;
  • приборы МТЗ (максимальной токовой защиты), электронные токовые реле;
  • комбинированные устройства защиты.

При выборе релейной защиты проконсультируйтесь со специалистом.

10. Обращайте внимание на вибрацию и шум

Обращайте самое пристальное внимание на такие параметры электрической машины как вибрация и шум. Если они не в пределах нормы, то свидетельствуют о механической неисправности. Очень важно вовремя уловить данные изменения в работе машины, определить причины возникновения, и конечно же устранить их.

Если самостоятельно решить данный вопрос не получается, рекомендуем обращаться напрямую к производителям, обладающим необходимым оборудованием, и специалистам, регулярно решающими подобного рода задачи. Это сэкономит вам время и деньги!

Электродвигатели приводов работают в двигательном и тормозном режимах, преобразуя электрическую энергию в механическую или, наоборот, механическую энергию в электрическую. Преобразование энергии из одного вида в другой сопровождается неизбежными потерями, которые в конечном итоге превращаются в тепло.

Материалы, применяемые для изготовления электродвигателей (сталь, медь, алюминий, изоляционные материалы), обладают различными физическими свойствами, которые изменяются от температуры.

Изоляционные материалы наиболее чувствительны к нагреву и обладают наименьшей нагревостойкостью по сравнению с другими материалами, используемыми в двигателе. Поэтому надежность работы двигателя, его технико-экономические характеристики и номинальная мощность определяются нагревом материалов, применяемых для изоляции обмоток.

Срок службы изоляции электродвигателей зависит от качества изолирующего материала и от температуры, при которой она работает. Практикой установлено, что, например, хлопчатобумажная волокнистая изоляция, погруженная в минеральное масло при температуре около 90 °С, может надежно работать в течение 15 - 20 лет. В течение этого срока происходит постепенный износ изоляции, то есть ухудшаются ее механическая прочность, эластичность и другие свойства, необходимые для нормальной работы.

Повышение рабочей температуры всего на 8 - 10 °С сокращает время износа этого вида изоляции до 8 - 10 лет (примерно в 2 раза), а при рабочей температуре 150 °С износ наступает через 1,5 месяца. Работа при температуре около 200 °С приводит эту изоляцию в негодность через несколько часов.

Потери, вызывающие нагрев изоляции двигателя, зависят от нагрузки. Малая нагрузка увеличивает время износа изоляции, но приводит к недоиспользованию материалов и повышению стоимости двигателя. Наоборот, работа двигателя с большой нагрузкой резко сокращает его надежность и срок службы, и также может оказаться экономически нецелесообразной. Поэтому рабочую температуру изоляции и нагрузку двигателя, то есть его номинальную мощность, выбирают из технико-экономических соображений с таким расчетом, чтобы время износа изоляции и срок службы двигателя в условиях нормальной эксплуатации был примерно 15 - 20 лет.

Применение изоляционных материалов из неорганических веществ (асбеста, слюды, стекла и др.), обладающих более высокой нагревостойкостью, позволяет снизить вес и габариты двигателей и увеличить мощность. Однако нагревостойкость изоляционных материалов определяется в первую очередь свойствами лаков, которыми пропитывают изоляцию. Пропиточные составы даже из кремнийорганических соединений (силиконов) обладают сравнительно невысокой нагревостойкостью.

Правильно выбранный двигатель для привода рабочей машины, должен соответствовать механическим характеристикам, режиму работы машины и требуемой мощности. При выборе мощности двигателя исходят прежде всего из его нагрева, а точнее нагрева его изоляции.

Мощность двигателя будет определена правильно, если при работе температура нагрева его изоляции близка к предельно допустимой. Завышение мощности двигателя приводит к снижению рабочей температуры изоляции, недоиспользованию дорогостоящих материалов, к увеличению капитальных затрат и ухудшению энергетических показателей.

Мощность двигателя будет недостаточной по отношению к требуемой, если рабочая температура его изоляции превышает предельно допустимую, что может привести к неоправданным капитальным затратам на замену двигателя, в результате преждевременного износа изоляции.

В настоящее время двигатели переменного тока пользуются большим спросом среди большинства современных производственных предприятий. Асинхронные двигатели (АД) на практике показывают свою выносливость и простоту по относительно низкой стоимости. Однако в процессе эксплуатации могут возникать повреждения элементов двигателя, что в свою очередь приводит к преждевременному выходу его из строя.

Основными источниками развития повреждений асинхронного двигателя являются:

  • перегрузка или перегрев статора электродвигателя 31%;
  • межвитковое замыкание – 15%;
  • повреждения подшипников – 12%;
  • повреждение обмоток статора или изоляции – 11%;
  • неравномерный воздушный зазор между статором и ротором – 9%;
  • работа электродвигателя на двух фазах – 8%;
  • обрыв или ослабление крепления стержней в беличьей клетке – 5%;
  • ослабление крепления обмоток статора – 4%;
  • дисбаланс ротора электродвигателя – 3%;
  • несоосность валов – 2%.

Последние материалы раздела:

Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир
Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир

26 августа 1812 года решалась судьба России и русских людей. Сражение под Бородином у Л. Н. Толстого - это момент наивысшего напряжения, момент...

Плов из говядины пошаговый рецепт
Плов из говядины пошаговый рецепт

Интересует, как правильно приготовить плов из говядины? Сегодня это любимое блюдо в каждой семье. Часто можно встретить рецепты узбекского или...

Гадания думает ли он. Гадания на картах
Гадания думает ли он. Гадания на картах

ПОДЕЛИЛИСЬ Когда мы влюблены, то часто вспоминаем объект своей симпатии и, естественно, нам становится интересно, взаимно ли наше чувство и что...